



## Know Your Risk

Stochastic Exposures & LGDs in Portfolio Credit Risk, and their impact in BIS II capital

> FIELDS Institute Toronto, October 30 2002

Dan Rosen VP, Product Marketing, Algorithmics Inc. *drosen@algorithmics.com* 

©2002 Algorithmics Inc.



| Outline | Algorithmics A                                                                                                                                                                                                                                                                                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>Introduction</li> <li>Credit capital and BIS II</li> <li>Credit Exposures for derivatives</li> <li>General Portfolio Credit Risk</li> <li>Framework <ul> <li>Integrated Market-Credit Risk</li> <li>Portfolio Model in BIS II weights</li> </ul> </li> <li>Case study <ul> <li>Credit Risk with Stochastic Exposures/LGDs</li> </ul> </li> </ul> |



| Outline | Algorithmics $\mathcal{A}^{i}$             |
|---------|--------------------------------------------|
|         | Introduction     Credit capital and BIS II |
|         |                                            |



 Minimum Capital Under BIS II
 Momentation

 Summary of minimum capital requirements
 Summary of minimum capital requirements

 • Three approaches to calculation of risk-weighted assets:
 (Revised) standardized approach

 • Foundation internal ratings-based (IRB) approach
 Advanced Internal ratings-based (IRB) approach

 • Explicit capital charge for operational risk
 Market risk capital as defined in the 1996 Amendment to remain largely unchanged







| Outline | Algorithmics A:                                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>Introduction</li> <li>Credit capital and BIS II</li> <li>Credit Exposures for derivatives</li> </ul> |









## Wrong Way Exposures Algorithmics At Scenarios where transactions are in the money to us... likely to coincide with counterparty having difficulty fulfilling its obligation

### Examples:

Currency Swap with emerging market sovereign

- sovereign pays USD: significant correlation: exposure and FX
- IR swap with highly leveraged institution which receives fixed
  - rising IRs will more likely result in defaults
- Some general empirical evidence: 1971-92 defaults tended to cluster in periods with falling IRs (Duffee 1996)
  - receiver swap: significant correlation between exposure and IRs
  - "correlated exposures" ~ 65% grater than measures assuming independence

 Outline
 Algorithmics of the comporated

 • Introduction
 • Introduction

 • Credit capital and BIS II
 • Credit Exposures for derivatives

 • General Portfolio Credit Risk
 • General Portfolio Credit Risk

©2002 Algorithmics Inc

Credit Exposures for derivatives
 General Portfolio Credit Risk
 Framework
 Integrated Market-Credit Risk



























| Outline Algorithmics |                                                                                                                                                                                                                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul> <li>Introduction <ul> <li>Credit capital and BIS II</li> <li>Credit Exposures for derivatives</li> </ul> </li> <li>General Portfolio Credit Risk <ul> <li>Framework</li> <li>Integrated Market-Credit Risk</li> <li>Portfolio Model in BIS II weights</li> </ul> </li> </ul> |

## <text><text><text><text><list-item><list-item><list-item>

























| Outline | Algorithmics A:                                                                                                                                                                                                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>Introduction</li> <li>Credit capital and BIS II</li> <li>Credit Exposures for derivatives</li> <li>General Portfolio Credit Risk</li> <li>Framework <ul> <li>Integrated Market-Credit Risk</li> <li>Portfolio Model in BIS II weights</li> </ul> </li> <li>Case study <ul> <li>Credit Risk with Stochastic Exposures/LGDs</li> </ul> </li> </ul> |





















### Credit Capital for Finite Portfolio



Two Models:

Deterministic exposures (DE):

• Loan-equivalent exposures used as model inputs = expected exposures Stochastic exposure (SE):

Calculated through the Monte Carlo simulation

Note: to capture losses over one year, a multi-step portfolio model is required.

- precise timing of default during the 1y horizon can have substantial impact
- we keep the problem simple to focus on the impact of exposure volatilities and correlations by using a single-step model.

©2002 Algorithmics Inc.



| Base Case: Loss Statistics                                          |                                                  | Algorithmics $\mathcal{A}^{i}$ |                         |
|---------------------------------------------------------------------|--------------------------------------------------|--------------------------------|-------------------------|
| Homogeneous portfolio of 72 counterparties, each with a payer swap. |                                                  |                                |                         |
| 4%                                                                  | tic                                              | Deterministic<br>Exposures     | Stochastic<br>Exposures |
| Exposur                                                             | es<br><sub>histic</sub> Expected Losses          | 64                             | 77                      |
| Exposures                                                           | es Standard Deviation                            | 137                            | 229                     |
|                                                                     | Credit VaR (95%)                                 | 292                            | 347                     |
|                                                                     | Credit VaR (99%)                                 | 558                            | 1,018                   |
| 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000<br>0                  | <sup>4,500</sup> <sup>5</sup> Credit VaR (99.9%) | 1,181                          | 2,317                   |
| Loss, L<br>base case (\$USD)                                        | Expected Shortfall<br>(95%)                      | 421                            | 852                     |
|                                                                     | Expected Shortfall<br>(99%)                      | 729                            | 1,666                   |
| $(72)$ now or owners $\theta^2 = 0.25$                              | Expected Shortfall<br>(99.9%)                    | 1,420                          | 3,275                   |
| $(12 \text{ payer swaps}, \beta^2 = 0.25, \rho = 0.2$               | 20)                                              |                                | ©2002 Algorithmics Inc. |

# Tails of Portfolio Loss Distributions Algorithmics of the comporated of the deterministic case is truncated at losses of about \$6,400 Maximum possible losses when all 72 swaps default for a loss of \$89 each With stochastic exposures such a loss could occur when only about one-quarter of the swaps default on an extreme market move Alternatively: the joint event of having a 99.9% market move and all counterparties default, would produce losses over four times larger.

## Portfolio of receiver swaps

| A | gorit | hm   | ICS  | A |
|---|-------|------|------|---|
|   | Inco  | rpor | ated | • |

i

| Pay Fixed                                         |
|---------------------------------------------------|
| 300                                               |
| 250 14                                            |
| 200 /                                             |
| 150-1///                                          |
|                                                   |
| 50                                                |
| 0                                                 |
| Sep-00 Mar-01 Oct-01 Apr-02 Nov-02 May-03 Dec-03  |
| 140 Mean                                          |
| 120- Mean + Standard Deviation<br>RightTail @ 95% |
| 100- 100- 100- 100- 100- 100- 100- 100-           |
| <sup>80</sup> - N                                 |
|                                                   |
| 20                                                |
|                                                   |
| Sep-00 Mar-01 Oct-01 Apr-02 Nov-02 May-03 Dec-03  |

|                    | Pay Fixed | Receive Fixed |
|--------------------|-----------|---------------|
| Expected Exposure  | 89        | 13            |
| Standard Deviation | 77        | 35            |
| Quantile (95%)     | 228       | 89            |
| Quantile (99%)     | 288       | 167           |
| Quantile (99.9%)   | 368       | 265           |

• While some loss statistics are over 200% higher for a portfolio of payer swaps, the percent <u>difference in the models is much larger for a similar portfolio of receiver</u> <u>swaps</u>

• relative difference between mean and tail-swap exposures is much larger for receiver swap; e.g. 99.9% tail exposure is over 20 times the expected exposure





















©2002 Algorithmics



