The fixed point on compacta property of topological groups

Vladimir Pestov

Department of Mathematics and Statistics, University of Ottawa

vpest283@science.uottawa.ca

Workshop on Descriptive Set Theory, Analysis and Dynamical Systems

Fields Institute, Toronto, October 11, 2002

def. A topological group G has the *fixed point on compacta property* (f.p.c.) (= is *extremely amenable*) if every continuous action of G on a compact space has a fixed point.

Veech thm.: every locally compact group acts freely on some compact space (⇒ fails the f.p.c.)

remark: Let G act on a compactum X, $f \in C(X)$, $\xi \in X$, \Rightarrow

 $G \ni g \mapsto f(g \cdot \xi) \in \mathbb{C}$ is right uniformly continuous bounded (RUCB):

 $\forall \epsilon > 0, \exists V \ni e_G, gh^{-1} \in V \Rightarrow |f(g) - f(h)| < \epsilon$ Every $f \in \text{RUCB}(G)$ is obtained in this way: X = S(G), the space of maximal ideals of RUCB (G), the *greatest ambit* of G. Proof of Veech thm. For every $g \in G$ construct a right uniformly continuous bounded (RUCB) $f: G \to \mathbb{R}^n$ with

$$|f(x) - f(gx)| \ge 1$$
 for all $x \in G$.

[for G discrete — obvious, how.]

f extended over the maximal ideal space, $\mathcal{S}(G)$, of RUCB (G, \mathbb{R}) has the same property

 $\Rightarrow G$ acts freely on S(G).

G has the fixed point on compacta property \Leftrightarrow for every $f \in \mathrm{RUCB}\,(G,\mathbb{R}^N)$, every $\epsilon > 0$ and every $g_1,g_2,\ldots,g_k \in G$,

 $\exists g \in G$, s. that $|f(g) - f(g_i g)| < \epsilon$ for $i = 1, 2, \dots, k$. \updownarrow

for every $f \in \text{LUCB}\,(G,\mathbb{R}^N)$ and every finite $F \subseteq G$, $\exists g \in G$, s. that $|f(g) - f(gx)| < \epsilon$ for $x \in F$ \updownarrow

if G acts transitively by isometries on a metric sp. X,

for every uniformly continuous bounded $f: X \to \mathbb{R}^N$, for each finite $F \subseteq X$, there is $g \in G$ such that $\operatorname{Osc}(f|_{gF}) < \epsilon$.

(Ramsey–Dvoretzky–Milman property of (X, G))

ex. 0. S_{∞} , symmetric group of ω ,

Polish topology: $S_{\infty} \subset (\omega_{discrete})^{\omega}$.

 S_{∞} does *not* have the f.p.c.:

 $X = \omega^{(2)} := \omega^2 \setminus \Delta_{\omega}$, trivial metric (0 or 1), $F = \{(0,1), (1,0)\},$

$$f: \omega^{(2)} \ni (x,y) \mapsto \begin{cases} 1, & \text{if } x < y, \\ 0, & \text{otherwise.} \end{cases}$$

For each $\sigma \in S_{\infty}$, Osc $(f|_{gF}) = 1$.

ex. 1 η - a dense linear order on ω , without min and max.

Aut $(\eta) \subset S_{\infty}$: η -preserving bijections. A closed subgroup.

Key fact: Aut (η) has the f.p.c. — and this is a reformulation of the classical

Finite Ramsey theorem: if $[\omega]^n$ is partitioned into finitely many subsets, then for every k there is an $A \subseteq \omega$ with |A| = k and $[A]^n$ monochromatic.

- St $_F$, for finite $F \subset \omega$, form open nbhd basis at e.
- Aut $(\eta)/\mathrm{St}_F \cong [\omega]^n$, where n=|F|, with the discrete metric.

 $\triangleleft G$ has f.p.c.

 \Leftrightarrow

 $\forall n, ([\omega]^n, \operatorname{Aut}(\eta)) \text{ has the R-D-M property}$

 \Leftrightarrow

[enough to consider functions with finite range] for each finite colouring of $([\omega]^n$ and each finite $B \subseteq [\omega]^n$, there is a $\sigma \in \operatorname{Aut}(\eta)$ with $\sigma(B)$ monochromatic \Leftrightarrow

apply Ramsey thm. to $B = [A]^n$ and notice that $\operatorname{Aut}(\eta)$ acts transitively on k-subsets of ω . \triangleright (the speaker, 1998.)

corol.: Homeo +[0,1] and Homeo $+\mathbb{R}$ have f.p.c.

 \triangleleft Aut $(\eta) \rightarrow$ Homeo +[0,1] has dense range. \triangleright

Lemma. If H < G is a closed subgroup, H has f.p.c., and G/H is compact, then G/H is a universal minimal compact G-space.

 $\triangleleft G$ acts on $X \Rightarrow \exists G$ -fixed $\xi \in X \Rightarrow G \ni g \mapsto g\xi \in X$ factors through G/H. \triangleright

corol.: \mathbb{S}^1 is the universal minimal flow for $\mathrm{Homeo}_+(\mathbb{S}^1)$. For closed manifolds X in $\dim X > 1$ this is no longer true:

thm. (V.V. Uspenskij) *The universal minimal flow is never 3-transitive.*

Q.: what is M(Homeo(X)), X is a compact manifold or the Hilbert cube?

Q.: is diff k[0,1] amenable $(k \ge 1)$?

- **ex. 2.** $U(l_2)_s$, the full unitary group of the infinite dimensional Hilbert space with the strong operator topology ($\hookrightarrow (l_2)^{l_2}$), has the f.p.c. property [Gromov and Milman, 1983]
- \Rightarrow R–D–M property of $(U(l_2), \mathbb{S}^{\infty})$ at the heart of Milman's proof of Dvoretzky theorem on almost spherical sections of convex bodies.
- **ex.** 3. (Glasner; indep., Furstenberg and Weiss.) $L_1(X, U(1))$ has f.p.c. property.

In most examples, the proofs go thus:

The phenomenon of concentration of measure on high-dimensional structures

 $X=(X,d,\mu)$ is a metric space with probability measure. ('mm-space')

Let $A \subseteq X$, $\mu(A) \ge \frac{1}{2}$, and $\epsilon > 0$.

• For high-dimensional X, the measure of the 'cap' $\mu(X \setminus A_{\epsilon}) \approx 0$ even for small $\epsilon > 0$.

('a simple but nontrivial observation' — Gromov)

def. a family (X_n, d_n, μ_n) of mm-spaces is a Lévy family if whenever $A_n \subseteq X_n$ and $\lim \inf \mu_n(A_n) > 0$, then for all $\epsilon > 0$

$$\lim \mu_n((A_n)_{\epsilon}) = 1.$$

- **ex. 1:** unit spheres \mathbb{S}^n with rotation-invariant probability measures and Euclidean (or geodesic) distances (Paul Lévy);
- **ex. 2:** groups SU(n) with Hilbert–Schmidt (or uniform operator) distance and Haar measure (Gromov's isoperimetric ineq.);
- **ex. 3:** permutation groups S_n with Hamming distance,

$$d(\sigma,\tau) = \frac{1}{n} |\{i : \sigma_i \neq \tau_i\}|,$$

and normalized counting measure (Maurey);

ex. 4: the finite powers X^n of a probability space $X = (X, \mu)$ with the Hamming-type distance

$$d(x,y) = \frac{1}{n} |\{i: x_i \neq y_i\}|$$

and the product measure $\mu^{\otimes n}$ (Schechtman, Talagrand).

def. (Gromov and Milman) A topological group G is $L\acute{e}vy$ if there are compact subgroups

$$G_1 \subseteq G_2 \subseteq \cdots \subseteq G_n \subseteq \cdots \subseteq G$$

such that

- (i) $\cup G_n$ is everywhere dense in G,
- (iii) (G_n, d, μ_n) form a Lévy family, where
- μ_n is a normalized Haar measures on G_n ,
- d is a right-invariant metric on G.

- **ex. 1:** $G = U(l_2)_s$, $G_n = SU(n)$.
- **ex. 2:** $G = L_1([0,1], U(1)), G_n = U(1)^n$, tori (formed by simple functions on elements of a refining seq. of partitions of [0,1]).

thm. (Gromov—Milman) Every Lévy group G has f.p.c.

Idea behind the proof:

Let a group G act on an mm-space $X=(X,d,\mu)$, preserving metric and measure.

Let $\alpha(\epsilon)$ drop off sharply ('X is concentrated').

E.g.,
$$\mu(A) \ge \frac{1}{7} \Rightarrow \mu(A_{1/10}) > 0.99$$
.

Partition $A = A_1 \cup A_2 \cup \ldots \cup A_7$,

choose $g_1, g_2, ..., g_{100} \in G$,

for some $i, \mu(A_i) \geq 1/7, \Rightarrow$ the translates

 $g_1(A_i)_{1/10}, g_2(A_i)_{1/10}, \ldots, g_{100}(A_i)_{1/10}$ have a point x^* in common.

ex.: The topological groups $U(l_2)_s$ and $L_1([0,1],U(1))$ have f.p.c.

von Neumann and C^* -algebras

Equip the unitary group U(M) of a von Neumann algebra M with the $\sigma(M, M_*)$ -topology. (It is a group topology.)

thm. (Thierry Giordano and the speaker, 2001)

A von Neumann algebra M is approximately finite dimensional \Leftrightarrow

the unitary group $U(M)_*$ is the direct product of a compact group and group with f.p.c. property.

ex. 1:
$$M = \mathcal{B}(H), U(M)_* = U(\mathcal{H})_s$$
.

ex. 2:
$$M = L^{\infty}(0,1), U(M)_{*} = L_{1}((0,1), U(1)).$$

For a C^* -algebra A, the unitary group U(A) with the $\sigma(A, A^*)$ -topology is a topological group.

thm. (Th. G. – V.P.)

A C^* -algebra A is nuclear \Leftrightarrow

every minimal compact U(A)-flow is equicontinuous.

The Urysohn space

The *Urysohn metric space*, \mathbb{U} :

- a complete separable metric space,
- ω -homogeneous (every isometry between two finite subspaces extends to an isometry of \mathbb{U}),
- contains an isometric copy of every separable metric space.

This \mathbb{U} is unique up to an isometry.

(Vershik: the completion of ω w.r.t. a 'sufficiently random' metric is almost surely $\cong \mathbb{U}$.)

thm. (the speaker, 2000)

The isometry group Iso (\mathbb{U}) (with the compact-open topology) has the f.p.c. property.

Non-separable case: The same, but no uniqueness.

thm. (Uspenskij) Every top. group \hookrightarrow Iso (U') for a generalized Urysohn space U'.

corol. Every top. group \hookrightarrow an amenable top. group.

(Cf.: a closed subgroup of an amenable LC is amenable.

De la Harpe: $F_2 \hookrightarrow U(\mathcal{H})$.)

Ramsey-type results for metric spaces

thm. Let X be an ω -homogeneous metric space. Aut (X) has $f.p.c. \Leftrightarrow$

for every finite metric space $F \subseteq X$, if the space of isometric embeddings $X^{\hookleftarrow F}$ is coloured using finitely many colours, then for every finite metric subspace $G \subseteq X$ and every $\epsilon > 0$ there is an isometric copy of G, $G' \subseteq X$, such that all isometric embeddings $F \hookrightarrow X$ that factor through G' are monochromatic up to ϵ .

corollaries: for \mathbb{U} , l_2 , and for the sphere in l_2 .

Using concentration in (S_n)

Recall: (S_n) is a Lévy family (Maurey).

One cannot use it to prove that S_{∞} has f.p.c.

Let X be a non-atomic standard Borel measure space, either finite or sigma-finite.

Aut (X) — the group of measure-preserving automorphisms.

 $\operatorname{Aut}^*(X)$ — the group of measure class preserving automorphisms.

The weak topology: induced via the quasi-regular representation of Aut $^*(X)$ in $L^2(X)$.

thm. (Thierry Giordano and the author) The groups $\operatorname{Aut}(X)$ and $\operatorname{Aut}^*(X)$ with the weak topology has f.p.c. property.

 \triangleleft Aut (X): Rokhlin lemma, approximation with groups of interval exchange transformations. \triangleright

 $\operatorname{Aut}(X)$ with the uniform topology does not have f.p.c.

Dynamics of S_{∞}

Since S_{∞} does not have f.p.c. \Rightarrow it admits minimal actions on non-trivial compacta.

thm. (Eli Glasner—Benji Weiss, 2001)

The universal minimal compact flow for S_{∞} is the set of all linear orders on ω , considered as a top. subspace of $\{0,1\}^{\omega\times\omega}$, with the natural action of S_{∞} .

This action is uniquely ergodic, with the inv. measure supported on all dense orders.

(and of course, once the result is proved, you can do it simpler!)

 \triangleleft Let $\mathcal{M}(S_{\infty})$ be the universal minimal flow.

Aut (η) has f.p.c. \Rightarrow it has a fixed pt, $\xi \in \mathcal{M}(S_{\infty})$.

 $S_{\infty}/\mathrm{Aut}\left(\eta\right)$ is the set of all dense orderings on ω .

 $S_{\infty} \ni \tau \mapsto \tau(\xi)$ factors through an equivariant, right u.c. map $S_{\infty}/\mathrm{Aut}(\eta) \to \mathcal{M}(S_{\infty})$.

Easy to check that the equivariant compactification of $S_{\infty}/\mathrm{Aut}\,(\eta)$ is the set of all linear orders. \triangleright

Concentration to a non-trivial subspace

X is an mm-space, $f:X\to\mathbb{R}$ Lipschitz-1, M is a median value of f:

$$\mu\{f(x) \le M\} \ge \frac{1}{2}, \mu\{f(x) \ge M\} \ge \frac{1}{2},$$

then with high probability f differs from M very little:

$$\mu\{|f(x) - M| > \epsilon\} \le 2\alpha(\epsilon).$$

A 'nice' function f on a high-dimensional space 'concentrates near one value' (= is, probabilistically, 'almost constant.')

 \therefore One can define a metric $H\mathcal{L}_1$ on the isomorphism classes of mm-spaces (Gromov)so that (X_n) is a Lévy family $\Leftrightarrow X_n \to \{*\}$.

Parametrize $f:(0,1)\to X$, $g:(0,1)\to Y$, pull back $\operatorname{Lip}_1(X)$ and $\operatorname{Lip}_1(Y)$,

 $H\mathcal{L}_1(X,Y)=$ the Hausdorff distance between the pulled-back spaces [w.r.t. a metric determining convergence in measure].

Concentration to a nontrivial space: $X_n \to X$. Very few natural examples.

Q.: theory, technique: concentration of subobjects of *G* to the universal minimal flow?

Some more questions

Q. Is $C^{\infty}(X,G)$ amenable, X is a compact manifold, G is a simple compact Lie group?

(∈ math. physics)

to begin with: what is the minimal flow for C([0,1],G), G is a compact group?

F.p.c. property \Rightarrow in a particular case the R-D-M property of the unit sphere in ℓ^2 .

Q.: (Vitali Milman): does \exists a property of top. groups which, for $G = U(\ell^2)$, would 'correspond to' (and imply) the distortion property of ℓ^2 ?

Distortion property of ℓ^2 (Odell and Schlumprecht): \exists an equivalent norm $\|\cdot\|$ and $\lambda>1$ s.t. for every infinite-dimensional subspace $V\subseteq\ell^2,\ \exists x,y\in V,\ \|x\|_2=\|y\|_2=1,\|y\|/\|x\|>\lambda.$

examples! — what concrete 'large' ('massive,' 'infinite dimensional') groups have f.p.c.? what are their universal minimal flows? any subobjects that concentrate to those flows? ...

Reading suggestions:

The introductory notes and references therein:

V. Pestov, mm-Spaces and group actions, to appear in L'Enseignement Mathématique,

http://arXiv.org/abs/math.FA/0110287

Have several hard copies with me right now.

Acknowledgements and thanks:

Marsden Fund of the Royal Society of New Zealand University of Ottawa internal grants
Workshop Organizers