Borel and countably determined reducibility in nonstandard domain

Vladimir Kanovei *† Michael Reeken ‡

^{*}MCCME, Moscow.

[†]Support of DFG and The Organizers acknowledged.

[‡]University of Wuppertal, Germany.

Blanket agreements:

A nonstandard universe is a structure of the form ${}^*S = \{{}^*S_n\}_{n \in \mathbb{N}}$, where

- 1) ${}^*S_0 = {}^*\mathbb{N}$, a nonstandard extension of \mathbb{N} ;
- 2) $S_{n+1} \subseteq \mathcal{P}(S_n)$;
- 3) The whole structure S models the type theory;
- 4) S is countably saturated.

Sets in S are called internal.

In particular, a set $X \subseteq {}^*\mathbb{N}$ is internal iff it belongs to *S_1 . Other sets $X \subseteq {}^*\mathbb{N}$ are called $\boxed{external}$.

Some external sets

A set $X \subseteq {}^*\mathbb{N}$ is Borel iff it belongs to the least sigma-algebra containing all internal sets.

$$\Sigma_0^0 = \Pi_0^0 = \text{all internal sets};$$

$$\Sigma^0_{\xi}=$$
 countable unions of sets in $\bigcup_{\alpha<\xi}\Pi^0_{\alpha}$;

$$\Pi_{\xi}^0 = \text{complements of sets in } \Sigma_{\xi}^0.$$

Borel $= \bigcup_{\xi < \omega_1} \Sigma_{\xi}^0$ and the hierarchy theorem holds.

Sets of the form $X = \bigcup_{f \in F} \bigcap_m X_{f \upharpoonright m}$, where

- 1) $F \subseteq \mathbb{N}^{\mathbb{N}}$;
- 2) every set X_u , $u \in \mathbb{N}^{<\omega}$, is internal;

are called countably determined (in brief, CD).

Then:

internal \subsetneq Borel \subsetneq countably determined

Warmup: Borel cardinals

Let $X, Y \subseteq *\mathbb{N}$. Define:

 $X \leq_{\mathsf{B}} Y$ iff there is a Borel injection $\vartheta: X \to Y$.

 $X \equiv_{\mathsf{B}} Y$ iff $X \leq_{\mathsf{B}} Y$ and $Y \leq_{\mathsf{B}} X$ iff there is a Borel bijection $\vartheta : X$ onto Y.

Borel cardinal: $a \equiv_{B}$ -class of a Borel subset of $*\mathbb{N}$.

 $X \leq_{\mathtt{CD}} Y$, $X \equiv_{\mathtt{CD}} Y$, CD cardinal — similarly.

Theorem (Kalina – Zlatos, 1989: AST).

The structure of Borel cardinals of Borel subsets of $*\mathbb{N}$ under \leq_B is similar to the structure of Borel cuts in $*\mathbb{N}$ modulo the relation:

 $U \approx V$ iff $\forall x \in U \ \exists \ y \in V \ \left(\frac{x}{y} \simeq 1\right)$ and vice versa (under \subseteq).

Theorem (Vopenka - Cuda, 1980: AST).

At least under CH, there exist \leq_{CD} -incomparable countably determined subsets of $*\mathbb{N}$.

It follows that Borel cardinals are linearly ordered by \leq_B while CD cardinals are, perhaps, not linearly ordered by \leq_{CD} .

Reducibility of ERs in nonst. universe

ER = equivalence relation

Let E, F be ERs on Borel sets $X, Y \subseteq *\mathbb{N}$.

 $\mathsf{E} \leq_\mathsf{B} \mathsf{F}$ iff there is a Borel map $\vartheta: X \to Y$ s. t. $x \mathsf{E} x' \Longleftrightarrow \vartheta(x) \mathsf{F} \vartheta(x')$: Borel reducibility.

Meaning: X/E has \leq_B classes than Y/F

 $\mathsf{E} \equiv_{\mathsf{B}} \mathsf{F}$ iff $\mathsf{E} \leq_{\mathsf{B}} \mathsf{F}$ and $\mathsf{F} \leq_{\mathsf{B}} \mathsf{E}$

 $E <_B F$ iff $E \le_B F$ but not $F \le_B E$

Example: For any X, D(X) is the equality on X. Then, for Borel X,Y:

 $D(X) \leq_B D(Y)$ iff $X \leq_B Y$ in the sense above.

 $\mathsf{E} \leq_{\mathtt{CD}} \mathsf{F}, \; \mathsf{E} \equiv_{\mathtt{CD}} \mathsf{F}, \; \mathsf{E} <_{\mathtt{CD}} \mathsf{F}$ (CD map ϑ)

 $\mathsf{E} \leq_{\mathsf{int}} \mathsf{F}, \; \mathsf{E} \equiv_{\mathsf{int}} \mathsf{F}, \; \mathsf{E} <_{\mathsf{int}} \mathsf{F}$ (internal ϑ)

Program: Study the structure of Borel and CD ERs under all these relations. (Inspired by studies in classical descriptive set theory.)

Smooth and "countable" ERs

ER E is:

"countable" if its equivalence classes are at most countable.

B-smooth if $E \leq_B D(*\mathbb{N})$, *i. e.*, its equiv. classes can be Borel-enumerated by elements of $*\mathbb{N}$.

CD-smooth if
$$E \leq_{CD} D(*N)$$

A *transversal* is a set having exactly one element in every equivalence class

Theorem. Any "countable" countably determined equivalence relation E on $*\mathbb{N}$ admits a CD transversal, hence, is CD-smooth.

(Jin *JSL* 2001 for the ER: $x M_{\mathbb{N}} y$ iff $|x-y| \in \mathbb{N}$.)

Remark: M_N is a "countable" ER, hence, CD-smooth, but is <u>not</u> B-smooth, therefore, the Borel reducibility is really stronger than the CD one.

Silver – Burgess dichotomy

Infinite internal sets are considered as **large**, in principle, bigger than any fixed external cardinality under a suitable saturation assumption.

It is known (Henson, Cuda–Vopenka) that a CD set $X \subseteq {}^*\mathbb{N}$ either is at most countable (*i. e.*, rather small) or contains an infinite internal subset (*i. e.*, rather large). What about quotients ?

The next theorem resembles theorems of Silver and Burgess in classical descriptive set theory.

Theorem . Let E be a CD equivalence relation on $*\mathbb{N}$. Then exactly one of (I), (II) holds:

- (I) there is a number $h \in {}^*\mathbb{N} \setminus \mathbb{N}$ and an internal map $f : {}^*\mathbb{N} \to 2^h$ s. t. $f(x) \upharpoonright \mathbb{N} = f(y) \upharpoonright \mathbb{N} \Longrightarrow x \to y$; (Here $2^h =$ all internal $f : [0,h) \to 2$.)
- (II) there is an infinite internal pairwise E-inequivalent set $Y \subset *\mathbb{N}$.

In Case (I), E has at most $\mathfrak c$ equivalence classes, but if E is *Borel* then (by an additional argument) it has either exactly $\mathfrak c$ or $\leq \aleph_0$ classes .

Generalization

In the following geleralization of Theorem the distinction between two cases is formulated in terms of a given additive cut (initial segment) $U \subseteq {}^*\mathbb{N}$.

Theorem. Let E be a CD equivalence relation on $*\mathbb{N}$, and $U \subseteq *\mathbb{N}$ a countably cofinal additive cut. Then <u>at least one</u> of (I), (II) holds:

- (I) there is a number $h \in {}^*\mathbb{N} \setminus U$ and an internal map $\vartheta : {}^*\mathbb{N} \to 2^h$ s. t. $\vartheta(x) \upharpoonright U = \vartheta(y) \upharpoonright U \Longrightarrow x \to y$;
- (II) there is an internal pairwise E-inequivalent set $Y \subseteq \mathbb{N}$ with $\#Y \notin U$.

Moreover, if (II) holds and U satisfies

$$x \in U \Longrightarrow 2^x \in U$$
 (exponential cut)

then (I) fails even for CD maps ϑ .

Monadic ERs

Monadic ERs (Keisler, Leth) are those of the form

$$x M_U y$$
 iff $|x - y| \in U$ $(x, y \in {}^*\mathbb{N})$

where $U \subseteq *\mathbb{N}$ is an additive cut (i. e., an initial segment closed under +).

An example: $x \bowtie y$ iff |x - y| is finite.

Examples of cuts. 1) If $c \in {}^*\mathbb{N}$ then $c\mathbb{N} = \bigcup_n [0, cn)$ is a *countably cofinal* additive cut.

2) If $c \in {}^*\mathbb{N} \setminus \mathbb{N}$ then $c/\mathbb{N} = \bigcap_n [0, \frac{c}{n})$ is a *countably coinitial* additive cut.

Accordingly, $\mathsf{M}_{c\mathbb{N}}$ and $\mathsf{M}_{c/\mathbb{N}}$ are monadic ERs.

Remark: If $\emptyset \neq U \subsetneq {}^*\mathbb{N}$ is a Borel (even *countably determined*) cut then U is either countably cofinal or countably coinitial.

Accordingly, ${\rm M}_U$ can be called countably cofinal or countably coinitial monadic ER.

Countably cofinal monadic ERs

Let $U = \bigcup_n [0, a_n)$ be a cut, $\{a_n\}$ an increasing ω -sequence in ${}^*\mathbb{N}$.

Define the *rate of growth* of $\{a_n\}$:

$$\operatorname{rate}\left\{a_{n}\right\} = \inf_{n \in \mathbb{N}} \sup_{n' > n} \frac{a_{n'}}{a_{n}} \qquad (\text{a cut in } ^{*}\mathbb{N}).$$

Put $\boxed{\text{rate }U=\text{rate }\{a_n\}}$ for any increasing sequence cofinal in U. (Independent of the choice of $\{a_n\}$.)

Fact: Countably cofinal additive cuts are densely ordered by rate $U \subseteq \operatorname{rate} V$; cuts \mathbb{N} and $c\mathbb{N}$ are the smallest (rate $c\mathbb{N} = \emptyset$).

Theorem . (i) Suppose that $U, V \subseteq {}^*\mathbb{N}$ are countably cofinal additive cuts. Then

 $\mathsf{M}_U \leq_{\mathtt{B}} \mathsf{M}_V \quad \text{iff} \quad \mathsf{M}_U \leq_{\mathtt{CD}} \mathsf{M}_V \quad \text{iff} \quad \mathtt{rate}\, U \subseteq \mathtt{rate}\, V.$

(ii) All those ERs are not smooth, that is, not Borel-reducible to the equality on $*\mathbb{N}$.

Countably coinitial monadic ERs

Let $U = \bigcap_n [0, a_n)$ be a ctbly coinitial cut, $\{a_n\}$ a **de**creasing ω -sequence in $*\mathbb{N}$.

Define the *rate of decrease* of $\{a_n\}$:

$$\operatorname{rate}\left\{a_{n}\right\} \; = \; \inf_{n \in \mathbb{N}} \; \sup_{n' > n} \; \frac{a_{n}}{a_{n'}} \qquad \text{(a cut in } ^{*}\!\mathbb{N}\text{)}.$$

Put $\boxed{\mathrm{rate}\,U=\mathrm{rate}\,\{a_n\}}$ for any decreasing sequence coinitial in U. (Independent of the choice of $\{a_n\}$.)

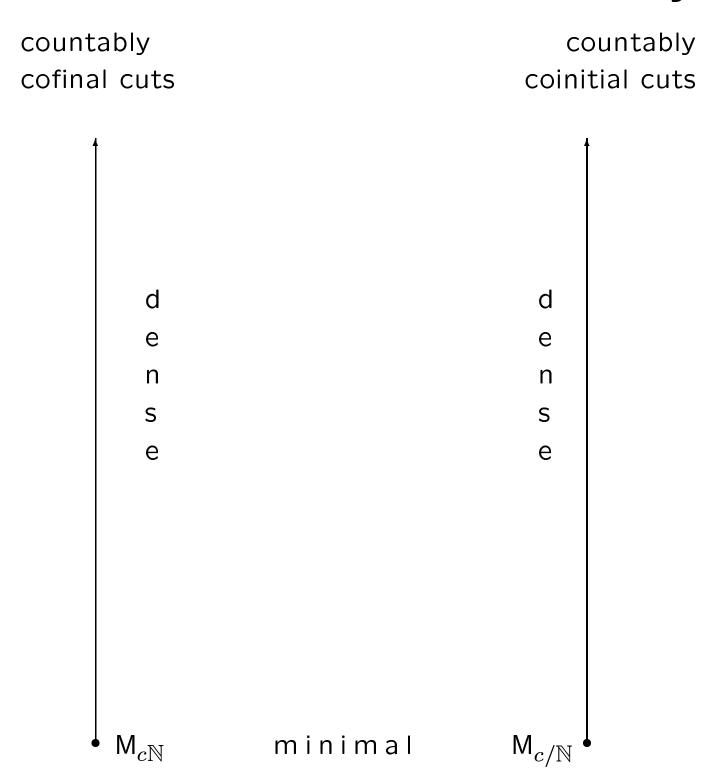
Fact: Countably coinitial additive cuts are densely ordered by rate $U \subseteq \operatorname{rate} V$; cuts c/\mathbb{N} are the smallest (rate $c\mathbb{N} = \emptyset$).

Theorem . (i) Suppose that $U, V \subseteq {}^*\mathbb{N}$ are countably coinitial additive cuts. Then

$$M_U \leq_B M_V$$
 iff $M_U \leq_{CD} M_V$ iff rate $U \subseteq \text{rate } V$.

- (ii) Countably coinitial ERs are not not smooth.
- (iii) Countably coinitial monadic ERs are \leq_{B} -in-comparable with ctbly cofinal monadic ERs.

Monadic ERs under Borel reducibility



Conjecture: the orders are countably saturated and similar to each other

Upper bound for countably cofinal ERs

Let * \mathbb{S} be the (internal, *-countable) set of all internal maps $\xi: \mathbb{N} \to 2$ such that $\xi(x) = 1$ for all but hyperfinitely many $x \in \mathbb{N}$.

For ξ , $\eta \in {}^*\mathbb{S}$ define:

$$\xi \text{ FD } \eta \quad \text{iff} \quad \xi(x) = \eta(x) \text{ for all}$$
 but finitely many $x \in {}^*\mathbb{N}.$

(FD from "finite difference".)

Theorem . (i) If U is a countably cofinal additive cut then $\mathsf{M}_U <_\mathsf{B} \mathsf{FD}$.

(ii) If $V \subseteq {}^*\mathbb{N}$ is an additive countably coinitial cut then $M_V \not\leq_{\mathtt{CD}} \mathsf{FD}$.