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The central derivative of the genus 2 Eisenstein series

Today, I want to discuss the identity

(A) 〈 φ̂1(τ1), φ̂1(τ2) 〉 ≡ E ′
2(

(
τ1

τ2

)
, 0, B),

which played a key role in the proof of the formula for the inner product < θ̂(f), θ̂(f) >

described in Lecture II. Recall that ≡ means the two sides differ by a combination

of theta functions coming from O(1)’s. In fact, the two sides should agree exactly,

but the proof of this is not finished.

§1. The genus 2 Eisenstein series.

Let

G′′
A

= S̃p2(A) = metaplectic cover of Sp2(A)

P = NM ⊂ Sp2 = Siegel parabolic

M = { m(a) =
(

a
ta−1

)
| a ∈ GL2 }

N = { n(b) =
(

1 b
1

)
| b ∈ Sym2 },

I(s) = IndG′′
A

PA
(| |s) = global degenerate principal series

= { Φ(s) : G′′
A
−→ C | Φ(n(b)m(a)g, s) = χψ(a)|a|s+ 3

2 Φ(g, s) }.
1
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A section Φ(s) ∈ I(s), defines a Siegel Eisenstein series

E(g′′, s,Φ) =
∑

γ∈P
Q
\G′′

Q

Φ(γg′′, s),

convergent in the half plane Re(s) > 3
2 , with a meromorphic continuation in s and

functional equation

E(g′′, s,Φ) = E(g′′,−s, M(s)Φ)

for the intertwining operator M(s) : I(s) −→ I(−s). We will only need sections of

the form

Φ(s) = Φ
3
2∞(s) ⊗ Φf (s)

where Φ
3
2∞(s) has weight 3

2 for the action of K ′′
∞ = Ũ(2), and the associated Eisen-

stein series can be pushed down to a function of τ ∈ H2 by the usual procedure:

E(τ, s,
3
2
,Φf ) := det(v)

3
4 E(g′′τ , s,Φ

3
2∞ ⊗ Φf ).

§2. The Eisenstein series E2(τ, s, B).

Recall from Lecture II that, for each prime p, we have ternary quadratic spaces V ±
p

over Qp with Hasse invariants εp(V ±
p ) = ±1. The local metaplectic cover

G′′
p = ˜Sp2(Qp)

acts in the space S((V ±
p )2) via the Weil representation ωp, and we get a map

λp : S((V ±
p )2) −→ Ip(0), ϕ �→ λp(ϕp),

λp(ϕp)(g) =
(
ω(g)ϕp

)
(0).

Here Ip(s) is the local induced representation. In fact, if

Π(V ±
p ) = λp(S((V ±

p )2))
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is the image of λ±
p , then this image is an irreducible G′′

p submodule of Ip(0) and

Ip(0) = Π(V +
p ) ⊕ Π(V −

p ).

This decomposition is closely connected with local theta dichotomy.

We define local sections as follows.

Let

O±
p = maximal order in B±

p

Oe
p = Eichler order of level p in B+

p = M2(Qp)

R±
p = V ±

p ∩ O±
p

Re
p = V +

p ∩ Oe
p

ϕ0
p = char((R+

p )2) ∈ S((V +
p )2)

ϕe
p = char((Re

p)
2) ∈ S((V +

p )2)

ϕ−
p = char((R−

p )2) ∈ S((V −
p )2)

Φ•
p(s) = standard section with

Φ•
p(0) = λ±

p (ϕ•
p), • ∈ { 0, −, e }.

Finally, let

Φ̃p(s) = Φ−
p (s) + Ap(s) Φ0

p(s) + Bp(s) Φe
p(s)

where Ap(s) and Bp(s) are entire functions of s with

Ap(0) = Bp(0) = 0, and A′
p(0) = − 2

p2 − 1
log(p), B′

p(0) =
1
2

p + 1
p − 1

log(p).

As we will see, the peculiar choice of the section Φ̃p(s) is dictated by the intersection

theory of vertical cycles in the fibers of bad reduction of the arithmetic surface M.



4

Next, recall some notation

B = indefinite quaternion algebra over Q

D(B) = product of ramified primes, D(B) > 1,

V = V B = {x ∈ B | tr(x) = 0}, Q(x) = −x2

Finally, we define a section Φ̃B(s) ∈ If (s) by

Φ̃B(s) =
(
⊗p|D(B) Φ̃p(s)

)
⊗

(
⊗p�D(B) Φ0

p(s)
)

,

and the associated (normalized) Eisenstein series

E2(τ, s, B) = η(s, B) ζ(2s + 2)E(τ, s,
3
2
, Φ̃B).

for a certain factor η(s, B), with η(0, B) �= 0, whose definition we omit.

By the construction,

E2(τ, 0, B) = 0.

§3. Nonsingular Fourier coefficients.

In order to prove identity I, we want to compare the individual Fourier coefficients

of the two sides. The following observation is crucial for the structure of the non-

singular coefficients.

Lemma. Suppose that T ∈ Sym2(Q) with det(T ) �= 0. Then, up to isomorphism,

there is a unique quaternion algebra BT over Q such that T is represented by ternary

quadratic space V T of trace zero elements in BT . Explicitly, the matrix for the

quadratic form on V T is (
T

det(V )/ det(T )

)
.
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Definition.

Diff(T, B) = { p | invp(BT ) = −invp(B) }.

Note that

|Diff(T, B)| = the ‘distance’ between BT and B

≡ 0 mod (2)

For the nonsingular Fourier coefficients of E2(τ, s, B), we have a product formula

E2,T (τ, s, B) = WT,∞(τ, s) ·
∏
p

WT,p(s),

where the local factors WT,p(s) are determined by the local factors of the section

Φ̃B(s). There are local vanishing results at s = 0:

WT,∞(τ, 0) =

{
qT if T > 0,

0 if sig(T ) = (1, 1) or (0, 2).

For a finite prime p, with p � 2D(B) det(T ),

WT,p(s) =
{

1 if T ∈ Sym2(Zp)
0 otherwise.

In general

WT,p(0) �= 0 ⇐⇒ T ∈ Sym2(Zp) and p /∈ Diff(T, B).

Thus, for T ∈ Sym2(Z),

E ′
2,T (τ, 0, B) = 0

except in the cases:

(i) T > 0 and Diff(T, B) = {∞, p} for a unique finite prime p.

(ii) BT = B, so sig(T ) = (1, 1) or (0, 2).
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In case (i), we have

E ′
2,T (τ, 0, B) = qT · W ′

T,p(0) ·
∏
� �=p

WT,�(0).

In case (ii), we have

E ′
2,T (τ, 0, B) = W ′

T,∞(τ, 0) ·
∏

�

WT,�(0).

The Fourier coefficients for singular T ’s do not have a product structure and are

more difficult to calculate.

§4. Heights and Fourier coefficients.

Returning to the main identity (A), the idea is to compare the Fourier coefficients

of the two sides. On the geometric side, we have:

〈 φ̂1(τ1), φ̂(τ2) 〉 =
∑
t1, t2

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 qt1
1 qt2

2 .

For the Eisenstein series we have

E ′
2(

(
τ1

τ2

)
, 0, B) =

∑
t1, t2

∑
T

diag(T )=(t1,t2)

E ′
2,T (

(
τ1

τ2

)
, 0, B).

Thus (A) amounts to a family of identities:

(A′) 〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 qt1
1 qt2

2 =
∑
T

diag(T )=(t1,t2)

E ′
2,T (

(
τ1

τ2

)
, 0, B).
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Theorem. Suppose that t1t2 is not a square and that the density identity below

holds for p = 2. Then (A′) holds.

The proof comes down to an explicit computation of the quantities on the two sides.

First note that the condition t1t2 is not a square implies that

(i) For all T with diag(T ) = (t1, t2), det(T ) �= 0, so that only nonsingular T ’s

occur on the right side of (A′).

(ii) The cycles Z(t1) and Z(t2) on M do not meet on the generic fiber, i.e.,

Z(t1)Q ∩ Z(t2)Q = ∅.
The disjointness of Z(t1) and Z(t2) on the generic fiber means that these cycles do

not have common horizontal components and, hence,

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 = 〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉∞ +
∑
p<∞

〈Z(t1),Z(t2) 〉p,

where 〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉∞ is the contribution of the Green’s functions, and

〈Z(t1),Z(t2) 〉p is the contribution of the intersection of the cycles supported in

the fiber Mp.

A more precise version of the previous result is then:

Theorem. (i)

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉∞ qt1
1 qt2

2 =
∑
T

diag(T )=(t1,t2)

BT =B

E ′
2,T (

(
τ1

τ2

)
, 0, B).

(ii) Suppose that the density identity holds for p = 2. Then

〈Z(t1),Z(t2) 〉p qt1
1 qt2

2 =
∑
T

diag(T )=(t1,t2)

BT =B(p)

E ′
2,T (

(
τ1

τ2

)
, 0, B).
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The product formulas described in section 3 can be used to compute the right hand

side. Since we have said very little about the Green functions involved in (i), we

will only discuss case (ii).

§4. Computation of intersection multiplicities.

Recall that Z(t) is the locus of triples (A, ι, x) where x ∈ V (A, ι) is a special endo-

morphism with Q(x) = t. The fiber product of two such cycles over M decomposes

as follows:

Lemma.

Z(t1) ×M Z(t2) =
∐
T

diag(T )=(t1,t2)

T≥0

Z(T ),

where

Z(T ) = locus of (A, ι,x), x ∈ V (A, ι)2, Q(x) = T .

Note that, when t1t2 is not a square, only positive definite T ’s occur in the decom-

position.

Proposition. Suppose that T ∈ Sym2(Z) is positive definite. Then

(i)

Z(T )Q = ∅.

(ii)

|Diff(T, B)| > 2 =⇒ Z(T ) = ∅.

(iii)

Diff(T, B) = {∞, p} =⇒ supp(Z(T )) ⊂ Mp.
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Proof. The key point is that only a supersingular abelian surface in characteristic p

can support such an additional pair of special endomorphisms x with detQ(x) �= 0.

But, for such an A,

V (A, ι) ⊗Z Q � V (p),

where

Diff(B(p), B) = {∞, p}.

Since V (A, ι) = V (p) must represent T , we have BT = B(p). �

When Diff(T, B) = {∞, p}, so that V T = V (p), there are two cases:

(a) p � D(B) =⇒ Z(T ) = 0–cycle in Mp.

(b) p | D(B) =⇒ Z(T ) can be a curve in Mp.

In case (a), the support of Z(T ) is a finite collection of points, each occuring with the

same multiplicity. This multiplicity can be calculated via the deformation theory of

the corresponding p–divisible formal groups, by specializing a result of Gross and

Keating.

Theorem. (Gross–Keating) The ‘multiplicity’, δp(T ), depends only on the GL2(Zp)–

equivalence class of T . Explicitly,

δp(T ) =




∑(α−1)/2
j=0 (α + β − 4j) pj if α is odd,

∑α/2−1
j=0 (α + β − 4j) pj + 1

2 (β − α + 1)pα/2 if α is even.

where, for p �= 2,

T �
(

ε1p
α

ε2p
β

)
,

with 0 ≤ α ≤ β and ε1, ε2 ∈ Z×
p . The same formula holds for p = 2 for the

appropriate definition of invariants α and β for T ∈ Sym2(Z2).
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Thus, the contribution to the height pairing of Z(T ) = Spec (R(T )) is

Ẑ(T ) : t = d̂eg (Z(T )) = log |R(T )|

=
(

number of points in supp(Z(T ))
)
· δp(T ) · log(p).

On the other hand, by using results of Kitaoka on representation densities of qua-

dratic forms in the case p �= 2, we find the p-adic density formula:

(B) W ′
T,p(0) = δp(T ) · log(p).

We expect this formula to hold for p = 2 as well, but the computations are not yet

complete.

Next, up the some elementary constants1, independent of T , the Siegel formula for

the space V (p) together with a parametrization of the supersingular points in the

fiber Mp yields

(C)
(

number of points in supp(Z(T ))
)

�
∏
� �=p

WT,�(0).

This yields the identity

(D) Ẑ(T ) = W ′
T,p(0) ·

∏
� �=p

WT,�(0),

where, for p = 2, we must assume the 2-adic density formula (B).

In case (b), where p | D(B), the cycle Z(T ) is, in general, a union of configurations of

components of the fiber Mp of bad reduction. Their contribution, Ẑ(T ), to the total

intersection multiplicity can be computed using p-adic uniformization, and is again

a product of a “multiplicity” δp(T ), which is independent of the configuration, times

1Hence the notation �
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the number of configurations. The analogues of (B), (C) and (D) then hold, where,

(B) is again obtained via a coincidence of the intersection multiplicity δp(T ), now

computed using Drinfeld’s p-adic upper half plane, and a combination of derivatives

and values of representation densities of quadratic forms. This coincidence has not

yet been proved in the case p = 2, so that we must again assume (B) in this case.

Finally, summing on T , we obtain the equality

〈Z(t1),Z(t2) 〉p qt1
1 qt2

2 =
∑
T

diag(T )=(t1,t2)

BT =B(p)

Ẑ(T ) qT

=
∑
T

diag(T )=(t1,t2)

BT =B(p)

E ′
2,T (

(
τ1

τ2

)
, 0, B).

claimed in (ii).


