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Lecture I

Among the most classical of modular forms are the theta functions, which arise as

generating functions for the representation numbers rQ(n) of quadratic forms.

For example, if (L, Q) is a lattice of rank m with an integer valued quadratic form

Q, then the formal power series

θ(τ, L) =
∞∑

n=0

rQ(n) qn =
∑

x∈L

qQ(x)

is the q–expansion of a modular form θ(τ, L), q = e(τ) = e2πiτ of weight 1
2m for a

subgroup Γ0(N) ⊂ SL2(Z), where the level N is determined by (L, Q).

The main theme of these lectures is that certain generating series constructed using

quantities in geometry/arithmetic geometry turn out to be the q-expansions of

modular forms.

In this lecture, I will discuss two types of examples:

I. generating functions for divisors or 0-cycles on certain complex surfaces S/C.

(joint work with John Millson)

II. generating functions for divisors or 0-cycles on certain arithmetic surfaces

M/Spec (Z). (joint work with Michael Rapoport and Tonghai Yang)
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The modular forms coming from complex geometry are indeed theta functions at-

tached to indefinite quadratic forms, and the methods of proof have their roots in

the classical work of Siegel on such functions.

The modular forms coming from arithmetic geometry are more exotic. They behave

in many ways like the theta functions in the complex case, however, hence the

terminology ‘arithmetic theta functions’.

I. Cycles on complex surfaces

The idea of constructing generating functions for the (cohomology classes of) curves

on a Hilbert modular surface goes back, of course, to Hirzebruch and Zagier.

§1. Complex surfaces.

The complex surfaces in question are constructed as follows:

V = Q–vector space with dimQ V = 4,

( , ) = symmetric bilinear form on V of signature (2, 2),

H = SO(V ), H(R) � SO(2, 2)

The associated symmetric space is

D = { z ⊂ V (R) | z = orient. 2-plane, ( , )|z < 0 } ⊂ Gr2(V (R))

� SO(2, 2)/SO(2) × SO(2)

� (H± × H±)0

Here H± = P
1(C)\P

1(R), and the subscript 0 indicates that either both components

lie in H+ or both components lie in H−.
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Let

Q(x) =
1
2
(x, x),

L = lattice on which Q is Z–valued,

ΓL := { γ ∈ H(Q) | γL = L } ⊂ H(Q),

Γ ⊂ ΓL, finite index.

The quotient

S = SΓ = Γ\D

is a quasi-projective surface.

Assume: (i) V is anisotropic over Q. This implies that S is projective.

(ii) Γ is sufficiently small. This implies that S is smooth.

Thus we have the usual cohomology groups H•(S).

§2. Curves on S.

Certain algebraic cycles on S can be described in terms of lattice vectors.

For x ∈ L with Q(x) > 0, there is a curve Dx ⊂ D,

Dx = { z ∈ D | (x, z) = 0 } � H.

Let Γx be the stabilizer of x in Γ. Then, we get a curve

Dx ↪→ D

↓ ↓
ix : Γx\Dx −→ S

with image Z(x) ⊂ S.

Note: Z(x) depends only on the Γ–orbit of x.
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For t ∈ Z>0, let

Z(t) =
∑

x∈L

Q(x)=t

mod Γ

Z(x),

and let

[Z(t)] ∈ H2(S),

be the corresponding cohomology class.

Define the generating series

φ1(τ) := [Z(0)] +
∑

t>0

[Z(t)] qt ∈ H2(S)[[q]],

where

[Z(0)] = [Ω], Ω = a suitable Kähler form.

The analogue of the Hirzebruch–Zagier result is the following:

Theorem. (K.-Millson) The generating function φ1(τ) for the cohomology classes

of the divisors Z(t) on S is a holomorphic modular form of weight 2 valued in

H2(S).

Here, τ = u + iv ∈ H and q = e(τ) = e2πiτ .



5

§3. 0–cycles on S.

Cycles of codimension 2 are associated to pairs of vectors. For

x = [x1, x2] ∈ L2, with Q(x) =
1
2
(
(xi, xj)

)
> 0,

Ux = span of x1 and x2 in V

Dx = { z ∈ D | (x, z) = 0 } = U⊥ = point

and let

Z(x) = image of Dx in S.

Again, Z(x) depends only on the Γ–orbit of x.

Then, for a fixed T ∈ Sym2(Z)>0, let

Z(T ) =
∑

x∈L2

Q(x)=T

mod Γ

Z(x).

Then Z(T ) is a 0–cycle on S with class [Z(T )] ∈ H4(S). Of course, under the

degree isomorphism H4(S) � C,

[Z(T )] = deg(Z(T )) = # of points in Z(T ).

We can form part of a generating function

∑

T>0

[Z(T )] qT ∈ H4(S)[[q]],

but terms associated to singular T ’s must still be added.
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If T ∈ Sym2(Z)≥0 with det(T ) = 0 has rank 1, the definitions just given yield:

Q(x) = T =⇒ x1 and x2 span a line

=⇒ Z(x) = curve on S, as before,

=⇒ Z(T ) = curve on S, so [Z(T )] ∈ H2(S),

=⇒ [Z(T )] ∪ [Ω] ∈ H4(S),

Of course, under the degree isomorphism,

[Z(T )] ∪ [Ω] = vol(Z(T ),Ω) =
∫

Z(T )

Ω,

is the volume of the curve Z(T ).

Finally, for T = 0, we set

[Z(0)] = [Ω2] = vol(S, Ω2) =
∫

S

Ω2,

and we obtain the complete generating function

φ2(τ) =
∑

T∈Sym2(Z)≥0

[Z(T )] qT

= vol(S) +
∑

T≥0
rank(T )=1

vol(Z(T )) qT +
∑

T>0

deg(Z(T )) qT .

Let τ = u + iv ∈ H2, the Siegel space of genus 2 and let

qT = e(tr(Tτ)).
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Theorem. (K.-Millson) The generating function φ2(τ) for the family of cohomol-

ogy classes [Z(T )] on S is a holomorphic Siegel modular form of weight 2 and genus

2.

II. Cycles on arithmetic surfaces

We now turn to the generating functions for cycles on arithmetic surfaces associated

to Shimura curves.

§4. Arithmetic surfaces for Shimura curves.

The arithmetic theta function of the title will be a generating function for curves

on the arithmetic surface attached to a Shimura curve over Q.

To define the Shimura curve over C, let

B = indefinite quaternion algebra over Q

D(B) = product of ramified primes

OB = a maximal order in B

V = {x ∈ B | tr(x) = 0}, Q(x) = −x2

sig(V ) = (1, 2)

D = {w ∈ V (C) | (w, w) = 0, (w, w̄) < 0 }/C
×

� P
1(C) \ P

1(R)

H = B× = GSpin(V )

K = Ô×
B ⊂ H(Af )

M(C) � H(Q)\
(

D × H(Af )/K

)

M = the canonical model of the Shimura curve over Q

attached to B.
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In this setup, one has classical modular forms, the Shimura-Shintani-Niwa-Waldspurger

(theta) correspondence with modular forms of half integral weight, etc.

A model for M over Spec (Z) is defined via moduli. Let

M = moduli stack over Spec (Z) for (A, ι)’s

A = abelian surface

ι : OB ↪→ End(A)

an action of OB on A

satisfying Drinfeld’s special condition.

Then

M = MQ = M×Z Q.

p � D(B) =⇒ M has good reduction at p.

p | D(B) =⇒ M has bad reduction at p and the fiber Mp

for such p has a p-adic uniformization.

§5. Curves on M.

The arithmetic cycles in M are defined by imposing additional endomorphisms:

Define: Special endomorphisms of (A, ι):

V (A, ι) =
{

x ∈ End(A)
∣∣∣∣

x ι(b) = ι(b)x, ∀b ∈ OB

tr(x) = 0.

}

This Z-module has a quadratic form

Q : V (A, ι) −→ Z
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defined by

x2 = −Q(x) · 1A.

Define: For an integer t > 0,

Z(t) : = locus in M of (A, ι, x)’s

x ∈ V (A, ι) with Q(x) = t

A few features of the geometry of Z(t) are as follows:

Z(t) = a (possibly reducible) curve on M.

Z(t)(C) = set of (A, ι) over C with CM by Z[
√
−t]

i.e., CM points on the Shimura curve M .

The horizontal part of Z(t) is the closure in M of these points.

One interesting consequence of the modular definition of Z(t) is that vertical com-

ponents can occur in the fibers of bad reduction.

Example:

• If the field kt = Q(
√
−t) does not split B, then Z(t)Q = ∅.

• If there is a unique prime p | D(B) which is split in kt, then Z(t) is a

purely vertical cycle consisting of components of Mp. Replacing t by t p2r

‘thickens’ this vertical cycle!!

• In general, if kt splits B(p), then Z(t) has vertical components ⇐⇒
ordp(t) ≥ 2.
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§6. Arithmetic Chow groups and Green functions.

We would like to define a generating function for the Z(t)’s. To do this we need to

take their classes in the arithmetic Chow group ĈH
1
(M) of the arithmetic surface

M, which plays the role of H•(S).

To define the classes of the Z(t)’s in the arithmetic Chow group, we need to add

Green functions. Recall that ĈH
1
(M) is defined as the quotient of:

Ẑ1(M) =






(Z, g) |
Z = divisor with R-coefficients on M

g = Green function for Z






by the R span of the relations

d̂iv(f) = (div(f),− log |f |2),

for f ∈ Q(M)×, a nonzero rational function on M.

Here, g is a function on M(C), smooth except for a log–singularity along Z(C), and

with

ddcg + δZ = [ω].

• For a vertical divisor Z, there is a class

(Z, 0) ∈ ĈH
1
(M).

• For a smooth function φ on M(C), there is a class

(0, φ) ∈ ĈH
1
(M).

For the cycles Z(t) on M, Green’s functions can be constructed as follows:

Recall

V = {x ∈ B | tr(x) = 0}, Q(x) = −x2

D = {w ∈ V (C) | (w, w) = 0, (w, w̄) < 0 }/C
×
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For z ∈ D and x ∈ V , let

R(x, z) = |(x, w)|2|(w, w̄)|−1.

For t = 0 and v ∈ R
×
+, let

Ξ(t, v)(z) =
∑

x ∈ OB ∩ V
Q(x) = t

β1(2πvR(x, z)),

where

β1(r) =
∫ ∞

1

e−ru u−1 du

is the exponential integral.

Proposition. (i) For t > 0, Ξ(t, v) is a Green function for Z(t), so

Ẑ(t, v) = (Z(t),Ξ(t, v)) ∈ ĈH
1
(M).

(ii) For t < 0, Ξ(t, v) is a smooth function on M(C), so

Ẑ(t, v) = (0,Ξ(t, v)) ∈ ĈH
1
(M).

§7. The arithmetic theta function φ̂1(τ).

The arithmetic theta function is now the generating function for the classes Ẑ(t, v):

for τ = u + iv ∈ H, q = e(τ) = e2πiτ ,

φ̂1(τ) =
∑

t∈Z

Ẑ(t, v) qt ∈ ĈH
1
(M),
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with the constant term

Ẑ(0, v) = −ω̂ − (0, log(v)) + (0, c)

ω̂ = metrized Hodge line bundle on M,

= ε∗Ω2
A/M, A −→ M univ. ab.sch.

and c is the real constant:

〈ω̂, ω̂〉 − ζD(B)(−1)
[
2
ζ ′(−1)
ζ(−1)

+ 1 − log(4π) − γ −
∑

p|D(B)

p log(p)
p − 1

]
,

where ζD(B)(s) = ζ(s)
∏

p|D(B)(1 − p−s).

The constant c arises because we do not, at present, know the quantity 〈ω̂, ω̂〉, for

the height pairing 〈 , 〉 on ĈH
1
(M).

Conjecture: c = 0.

A basic result is then:

Theorem. φ̂1(τ) is a (non-holomorphic) modular form of weight 3
2 valued in ĈH

1
(M)C.

This result, which is obtained by analyzing the various components of φ̂1(τ) for the

decomposition of the arithmetic Chow group, will be discussed in Lecture II.

§8. 0–cycles on M.

To define cycles of codimension 2 on M, we impose a pair of special endomorphisms.

Thus, for T ∈ Sym2(Z)>0, let

Z(T ) = locus of (A, ι,x), x = [x1, x2] ∈ V (A, ι)2, Q(x) = T .
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For all T > 0, Z(T ) is either empty or is a cycle supported in a single fiber Mp

for a prime p determined by T in a simple way. We consider only T for which the

cycle is nonempty. If p � D(B), then Z(T ) is a 0–cycle in Mp, and we obtain an

associated class

Ẑ(T ) = (Z(T ), 0) ∈ ĈH
2
(M),

the second arithmetic Chow group of M with real coefficients. The arithmetic

degree map defines an isomorphism

d̂eg : ĈH
2
(M) ∼−→ R,

and

d̂eg (Ẑ(T )) = log |R(T )|,

where

Z(T ) = Spec (R(T ))

for an Artin ring R(T ). Such T ’s will be called regular. In addition, there are

positive definite T ’s where Z(T ) is supported in a fiber with p | D(B), and where

Z(T ) is a combination of components of Mp. In such an irregular case, the definition

of Ẑ(T ) is more complicated.
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For τ = u + iv ∈ H2, we can then form a generating series

φ̂2(τ) = Ẑ(0, v) +
∑

T∈Sym2(Z)

rank(T )=1

Ẑ(T, v) qT

+
∑

T∈Sym2(Z)

sig(T )=(1,1) or (0,2)

Ẑ(T, v) qT

+
∑

T∈Sym2(Z)

T>0

Ẑ(T ) qT ,

where qT = e(tr(Tτ)).

Here, the terms for T of signature (1, 1) and (0, 2) as well as the terms for all

singular T ’s, including T = 0 must be defined. More will be said about these terms

in Lecture III.

In any case, the series φ̂2(τ) is the analogue of the generating function for 0–cycles

on the complex surface S.

Conjecture. φ̂2(τ) is a Siegel modular form of weight 3
2 .

A more precise version of this conjecture is the following:

There is a Siegel Eisenstein series E2(τ, s, B) of weight 3
2 and genus 2 associated to B.

In the Langlands normalization, this series converges in the halfplane Re(s) > 3
2 ,

has a meromorphic analytic continuation to the whole s–plane with a functional

equation relating s and −s. Moreover,

E2(τ, 0, B) = 0.
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Conjecture.

φ̂2(τ) = E ′
2(τ, 0, B).

This conjecture is almost proved. The point is that it is possible to compare the

two sides one Fourier coefficient at a time and to check that:

Ẑ(T, v) qT ??= E ′
2,T (τ, 0, B)

for all T . For example, the following cases have been checked:

(i) T of signature (1, 1) and (0, 2),

(ii) T > 0 with p = 2,

(iii) T of rank 1.

Some of these results will be described in more detail in Lecture III.


