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One basic problem from lecture 1:

Under what circumstances can the theory of
the structure

��� �����	��

���
be finitely axiomatized, over ����� , in�

-logic?
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We require a definition.

Definition 1 Suppose that there exists a proper class
of Woodin cardinals. A set

� � �
is
�

-recursive if there exists a universally Baire set

� � �
such that

�
is � � definable in � � � 
 � �

from � � �
. � 

– The
�

-recursive sets form a transfinite
generalization (in terms of complexity) of the
recursive (i. e. Turing computable) sets.
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Lemma 2 Suppose that ! is a sentence such that for
all " either

(i) ���#� $ ! %'& “
� �(� � � ) * " ”, or

(ii) ���#� $ ! %+& “
� �(� � � ) * , " ”.

Let - be the set of all sentences " such that

����� $ ! %'& “
� ��� � � ) * " ” .

Then - is
�

-recursive. � 
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Theorem 3 Suppose that there exists a proper class of
Woodin cardinals.

Let - * /102�3� �(� � �4� .
The following are equivalent.

(1) - is
�

-recursive.

(2) There exist a sentence ! and a cardinal 5 such
that 6 7 ) * ���#� $ !
and such that for each sentence " , either

a) ����� $ ! % & “
� ���#�8� ) * " ”, or

b) ���#� $ ! % & “
� ��� � � ) * , " ”. � 
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Thus the basic problem:

9 Under what circumstances can the theory of the
structure ��� ��� � ��

���
be finitely axiomatized, over ���#� , in

�
-logic?

naturally leads to the problem:

9 How complicated are the
�

-recursive subsets of�
?

– such sets look potentially extremely
complicated (because the definition
involves universally Baire sets).

The combinatorial analysis of the
�

-recursive sets
involves combining elements of Descriptive Set
Theory with elements of Fine Structure Theory.
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: ; <
Definition 4 Suppose

� = �
. The set

�
is > -borel if

there exist a set ? = @ ACB
, an ordinal D , and a formula" �FE�GH
4E � � such that

� * IKJ � � �ML�NO? 
PJRQ�) * "SNO? 
4JRQ4T . � 
9 � = �

is > -borel if
�

has a transfinite borel
code.

– A key feature is that the code be effective;
i. e. that it be a set of ordinals.

9 Assuming the Axiom of Choice, every set
� � �

is > -borel.

Definition 5 U is the supremum of the ordinals D
such that there exists a surjection

V W � X DY. � 
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Definition 6 (ZF + DC Z )
: ; <

:

1. Suppose
� = �

. Then
�

is > -borel.

2. Suppose [ \ U and

V W [^] X � ]
is a continuous function. Then for each

� = �
the

set V�_ � N � Q
is determined. � 

Conjecture:
: ;

implies
: ; <

.
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Lemma 7 Assume

��� $ : ; $ “
6 * � � � �

” .
Then

: ; <
. � 

Theorem 8 Assume

��� $ ; � $ : ; Z2.
Then

: ; <
. � 
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Derived models

Theorem 9 Suppose that ` is a limit of Woodin
cardinals. Suppose that

a = �cbedfd �(�g
 \ ` �
is
6

-generic and let

�gh * i I �kjml hon Lqp D \ ` T .
Let r h be the set of

� = �1h
such that

(i)
� � 6 � �gh �

,

(ii) � � � h 
 � � ) * : ; <
.

Then � � � h 
 r h � ) * : ; < . � 
Models which arise in this fashion are derived models.
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Theorem 10
� : ; < �

Assume that6 * � �(s � � �P� .
There is a partial order t such that if

a = t is6
-generic then in

6 N a Q
there exists an inner model

u = 6 N a Q
such that in

6 N a Q
:

(1)
u ) * ���#� .

(2)
� j� is a limit of Woodin cardinals in

u
.

(3) There exists an
u

-generic filter

v = �cbedwd ���k
 \ � j� �
such that

a)
�cx * � j ,

b) r x * ��s � � �4� j
. � 
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The proofs of many of the deepest consequences of

��� $ : ; $ “
6 * � � � �

”

are based on the presentation of � � � �
as an inner

model; these proofs exploit the “smallness” of � � � �
in

various essential ways.

Perhaps surprising then is that these consequences
generalize, abstractly, to the theory:

��� $ : ; < $ “
6 * � �(s � � �4�

” .
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Theorem 11
� : ; < �

Assume6 * � �(s � � �P� .
(1) The pointclass y � � has the scale property.

(2) Suppose " ��E2
PJz� is a y � -formula and there exists
a set

�
such that 6 ) * "SN � 
 � Q .

There there exists
� {

such that

a)
6 ) * "|N � { 
 � Q

,

b)
� {

is coded by a set } = �
such that } is� � � . � 
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The connection between the universally Baire sets and: ; <
:

Theorem 12 Assume there exists a proper class of
Woodin cardinals.

Let r > be the pointclass of all
� = �

such that
�

is
universally Baire.

(1) r > is a ~ -algebra.

(2) For each
� � r > ,

s � � �#� � � � 
 � � � r > .
(3) For each

� � r�> ,

� � � 
 � � ) * : ; < . � 
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Combining the two previous theorems yields some
information on the complexity of the

�
-recursive

subsets of
�

.

Theorem 13 Assume there exist a proper class of
Woodin cardinals.

Suppose that - � �
is
�

-recursive.

Suppose that � is a cardinal and there is a Woodin
cardinal below � .

Then - is definable in the structure

��� � � ��

��� . � 
Improving this calculation requires a detour through
Fine Structure Theory.
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Fine structure and inner models

� is Gödel’s constructible universe:

� * i I ��� � � @ ACB T
where;

1. � G * �
,

2. � � < � * I�� = � � �
is definable in

� � � 
�����T ,

3. If � is a limit ordinal then

� � * i I �ML D \ � T .
The detailed analysis of � is the fine structure of � ;
this was initiated, and mostly developed, by Jensen.

The generalization of � to inner models in which
various large cardinal axioms hold, is the Inner Model
Program. The goal is to understand these inner models
and their fine structure.
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9 Measurable Cardinals: The inner model was
defined by Solovay. The fine structure was
developed by Solovay, building on work of
Kunen and Silver.

9 Woodin Cardinals and Beyond: The inner models
and their fine structure were defined and analyzed
by Mitchell and Steel.

– The Mitchell-Steel models can accommodate
substantial large cardinals.

– Existence can be proved at the level of Woodin
cardinals; e. g. assume there exists a Woodin
cardinal. Then a Mitchell-Steel inner model
for a Woodin cardinal exists.
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Suppose that � 
 u
are transitive sets,

� 
 u ) * ���#� ���#b8��� A�� ��� 

and that � W � X u
is elementary embedding with critical point5 � � � @ A�B

.

Suppose that 5 \ � � � � 5 � . We define the� 5 
 � � - � -extender, � , which is given by
�
. This

extender is simply the function

� W s � 5 ��� � X 6
given by:

� � � �o* � � � �2� � .

The formal definition specifies � as a family of� -ultrafilters.
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For each finite set � = � let

� � * I � = N�5 Q n � n � � � and � � � � � ��T .
Thus � � is an � -ultrafilter. The set

� * I � � 
 � � � � N�� Q�� ] and
� � � � T

is the
� 5 
 � � - � -extender given by

�
. If

6 7 < � = �
then � is a

� 5 
 � � -extender.

This definition of an extender is due to Jensen based
on an essentially equivalent notion due to Mitchell
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The Mitchell-Steel models are of the form � NH�� Q
where �� = @ ACB � 6
is a predicate defining a sequence of (partial)
extenders; more precisely if � � B b¡  � �� �

then

� � N �� Q#) * ���#�k���#b8��� A�� ���
and

� �� � � is a
� 5 
 � � - �M�^N �� Q

-extender (for some 5 \ � ).

9 Thus if

s � 5 ��� ���¢N �� Q�£* s � 5 ��� � N �� Q¤

then

� �� � � is not a
� 5 
 � � - � N��� Q

-extender.

9 Because the extenders are partial the development
of the fine structure of the Mitchell-Steel models
is necessary in order to even define the models.
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Another inner model can always be defined; it is¥ @ ;
.

A set
�

belongs to
¥ @ ;

if there exist an ordinal D
and a set � = D
such that

1.
� � � N � Q

,

2.
�

is definable in the structure

� 6 L 
����
from ordinal parameters.
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9 The Axiom of Choice holds in
¥ @ ;

;

– even if the Axiom of Choice fails in the
universe where

¥ @ ;
is computed.

9 ¥ @ ;
is not absolute, it can change in passing

from
6

to a generic extension of
6

.

9 (Vopenka)
6

is a (class) generic extension of¥ @ ;
.

– If the Axiom of Choice fails, then
6

is a (class)
symmetric generic extension of

¥ @ ;
.

22



Recall: U denotes the supremum of the ordinals D
such that there exists a surjection

V W � X DY.
Theorem 14 Assume

: ; ¦�§ Z¡¨ . Let

` * � U � ¦©§ Zª¨ .
Then in

� ¥ @ ; � ¦©§ Zª¨ , ` is a Woodin cardinal.
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A truly remarkable theorem of Steel:

Theorem 15 (Steel) Assume
: ; ¦�§ Z¡¨ . Let

` * � U � ¦©§ Zª¨ .
Then

� ¥ @ ; � ¦�§ Zª¨ � 6¬«
is a Mitchell-Steel model. � 

The proof of Steel’s theorem involves directed
systems of Mitchell-Steel models; a version of this
kind of construction will be discussed shortly and in a
simpler context.

Corollaries of Steel’s thorem include:

Theorem 16 (Steel) Assume
: ; ¦�§ Z¡¨ . Then the

Generalized Continuum Hypothesis holds in� ¥ @ ; � ¦�§ Z¡¨ . � 

24



But

What is
� ¥ @ ; � ¦©§ Zª¨ ?

Theorem 17
� ¥ @ ; � ¦�§ Z¡¨ is not a Mitchell-Steel

model. � 
However:

9 � ¥ @ ; � ¦©§ ZR¨ is a fine structure model.

9 It belongs to a new, quite different, hierarchy of
models.
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We illustrate the analysis which leads to the
characterization of

� ¥ @ ; � ¦©§ Zª¨ by analyzing a simple
case.

Theorem 18 (Kechris, Solovay) Suppose that
E � �

.
Then the following are equivalent.

1. � N E^Q|) * y �� -determinacy.

2. � N E^Q|) * All
@ ;

sets are determined. � 
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Theorem 19 (Kechris, Woodin) Assume for allE � �
,
E�­

exists. Assume y �� -Determinacy. Then
there exists

E�G � �
such that for all

E � �
, ifE�G � � N E¢Q then � N E¢Q¯® � N E�G°Q . � 

The converse is also true:

Theorem 20 Assume for all
E � �

,
E ­

exists and that
there exists

E�G � �
such that for all

E � �
, ifE�G � � N E¢Q then � N E¢Q¯® � N E�G°Q .

Then y �� -Determinacy. � 
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For each
E � �

let 5¬± be the least inaccessible
cardinal of � N E¢Q . We shall be considering the inner
models, � N E¢Q N a Q

, where

a = �cbedfd ���k
 \ 5^± �
is � N E¢Q -generic.

Of course by homogeneity, the inner model:

� ¥ @ ; � ¦ l ±°p l h p
does not depend on the choice of

a
and further;

� ¥ @ ; � ¦ l ±°p l h p
is simply

¥ @ ;
as computed in

� � � � �4� ¦ l ±°p l h p .
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The Kechris-Solovay Theorem generalizes to the
models, � N E¢Q N a Q

.

Lemma 21 Suppose that
E � �

and
E ­

exists. Then
the following are equivalent.

1. � N E^Q N a Q�) * y �� -determinacy.

2. � N E^Q N a Q�) *
All

@ ;
sets are determined. � 

Thus the model
� � � � �4� ¦ l ±°p l h p under the hypothesis ofy �� -determinacy is a “light-face” analog of � � � �

under
the hypothesis of

: ;
.
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We assume that for all
E � �

,
E¯­

exists and thaty �� -determinacy holds. Our goal is to analyze the inner
models,

� ¥ @ ; � ¦ l ±°p l h p , for a cone of
E

, where as
above

a = �cbedwd ���k
 \ 5¬± � is � N E¢Q -generic.

In fact the analysis can be carried out just assuming6 * � N E^Q N a Q
and y �� -determinacy.

Theorem 22 Suppose that
E � �

,
E ­

exists, and that

� N E¢Q N a Q�) * y �� -determinacy .
Let ` * �����	� ¦ l ±°p l h p . Then

� ¥ @ ; � ¦ l ±²p l h p ) * “ ` is a Woodin cardinal” � 
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We let ³ > be the set of inner models, � N �� Q
, such that

1. � N �� Q
is a Mitchell-Steel inner model;

2. �� = `�´µ where `�´µ \ � � ;
3. ` ´µ is the (unique) Woodin cardinal of � NH�� Q

;

4. There is no inner model of � Nq�� Q
with a Woodin

cardinal ` with ` \ ` ´µ ;

5. � N �� Q
is (countably) interable.
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Theorem 23 (Steel) Suppose that for all
E � �

,
E ­

exists. Suppose that � N �� G°Q¤
 � N �� � Q�� ³ > and

� N �� G Q¯* � N �� � Q .
Then �� G * �� � . � 
Theorem 24 (Mitchell, Steel) Suppose that ` is a
Woodin cardinal and suppose that

6 ­«
exists.

Then ³ > £* �
. � 
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Theorem 25 Suppose that that for all
E � �

,
E+­

exists and supoose that y �� -determinacy holds.

Then ³ > £* �
. � 

Theorem 26 (Mitchell, Steel) Suppose that that for
all

E � �
,
E ­

exists and that � N �� G¶Q·
 � N �� � Q¸� ³ > .
Then there exist � N �� Q¸� ³ > and iteration maps,� ´µ©¹ W � N �� G°Q X � N �� Q
and � ´µ+º W � N �� � Q X � N �� Q .
Further �� � � N �� G 
 �� � Q . � 

33



So ³ > is naturally a directed system under iteration
maps. It is fundamental theorem of Mitchell and Steel
this is a commutative system (which is a special
property of iteration maps as opposed to arbitrary
elementary embeddings).

We let > be the limit of this directed system.

For each pair
�FE»
 a �

let

³ h± * I � N¼�� Q�� ³ > � � N E¢Q N a Q `�´µ \ ��� � � ¦ l ±°p l h p T .
If ³ h± £* �

then ³ h± is directed subsystem of ³ > .
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We now come to the main points. Recall we are
assuming that for all

E � �
,
E¯­

exists and thaty �� -Determinacy holds.

Fix
E G � �

and
a G

such that ³ h ¹± ¹ £* �
.

The first main point is that for each ordinal D G there
exist � N½�� G Q¸� ³ h ¹± ¹ , v G and V G such that:

1.
��� � � ¦ l ± ¹ p l h ¹ p is the least inaccessible cardinal of� N �� G²Q

above ` ´µ ¹ ;
2. v G is � N½�� G°Q

-generic for �cbedfd �(�g
 \ [ � where[ * ��� � � ¦ l ± ¹ p l h ¹ p ;
3. � N E�G²Q N a G²Q¯* � N �� G²Q N v G¶Q ;
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and such that

4. V G W � N½�� G²Q X >h ¹¶¾ ± ¹ ;
5. D G is in the range of V G ;

where >h ¹ ¾ ± ¹ is the limit of the directed system, ³ h ¹± ¹
which is a subdirected system of ³ > .

Of course V G is uniquely specified by � Nq�� G²Q
.
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Since � N E�G¶Q N a G°Q¿* � N��� G¶Q N v G¶Q , clearly,

� ¥ @ ; � ¦ l ± ¹ p l h ¹ p � � N��� G¶Q .
But it also follows, because there are differing choices
of � N �� G²Q

, that

� ¥ @ ; � ¦ l ± ¹ p l h ¹ p £* � N �� G Q .
In fact cofinally many elements of ³ h ¹± ¹ satisfy the
requirements specified and further

� ¥ @ ; � ¦ l ± ¹ p l h ¹ p * I � N �� Q � N �� Q¸� ³ T
where ³ = ³ h ¹± ¹ is any such cofinal set.
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We shift the focus of our analysis from � N E G Q to � N �� G Q
.

So for each � N �� Q¸� ³ > let

³ ´µ = ³ >
be the set of � N��� Q�� ³ > such that

`#´À \ 5 ´µ
where 5 ´µ is the least inaccessible of � NH�� Q

above `�´µ .

For each � N �� Q¸� ³ > , ³ ´µ is a directed subsystem of³ > . Let > ´µ be the limit of this directed subsystem
and let V ´µ W � N �� Q X > ´µ
be the induced map.
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Clearly ³ ´µ©¹ is a directed subsystem of ³ h ¹± ¹ since

³ ´µ ¹ = ³ h ¹± ¹ .
The next key point is that ³ ´µ ¹ is actually cofinal in³ h ¹± ¹ . Thus dfÁÂ  ³ ´µ©¹ * dfÁÃ  ³ h ¹± ¹ 

and so > ´µ * >h ¹ ¾ ± ¹ and the natural map is the
identity.
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In particular, V G * V ´µ©¹ , where

V ´µ ¹ W � N �� G Q X > ´µ�¹
is the natural limit map (arising from the directed
system) from � N½�� G²Q

to

dfÁÃ  ³ ´µ©¹ * > ´µ ¹
recalling that � N �� G¶Q¸� ³ ´µ ¹ .
Thus by the choice of � Nq�� G Q

, D G is in the range of V ´µ©¹ .
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Let �� G * V ´µ©¹ � �� G �
and so

>h ¹ ¾ ± ¹ * > ´µ©¹ * � N��� G²Q .
The calculations on the definablity of � N �� G²Q show that

� N¼�� G Q = � ¥ @ ; � ¦ l ± ¹ p l h ¹ p * � ¥ @ ; � ¦ l ´µ ¹ p l x ¹ p .
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Shifting to � N½�� G²Q , we have the natural map,

V ´À ¹ W � N��� G¶Q X > ´ÀH¹ .
We have fixed D G and � N �� G²Q�� ³ h ¹± ¹ . Further

V ´µ ¹ W � N��� G²Q X � N¼�� G¶Q¯* dfÁÂ  ³ h ¹± ¹
is the associated embedding. The proof that

� N �� G¶Q = � ¥ @ ; � ¦ l ± ¹ p l h ¹ p * � ¥ @ ; � ¦ l ´µ©¹ p l x ¹ p .
also shows that V ´ÀH¹ = � ¥ @ ; � ¦ l ± ¹ p l h ¹ p .
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The final point is that

> ´ÀH¹ * V ´µ ¹ � � N¼�� G¶QF� .
and further since D G is in the range of V ´µ ¹ ,

V ´À ¹ � D G �o* V ´µ ¹ � D G �
(but V ´À ¹ £* V ´µ ¹ ) � N �� G²Q ).
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Now it follows that

� ¥ @ ; � ¦ l ´µ ¹ p l x ¹ p * � ¥ @ ; � ¦ l ± ¹ p l h ¹ p * � N �� G Q N V ´Àe¹ Q
To see this note that if " ��E¿� is a formula then;

� N E G Q N a G Q�) * "SNÄD G Q
if and only if

� N �� G Q�ÅÇÆÉÈ�È § ] ¾ � 7»ÊË ¹ ¨ ) * "|NÌD G Q .
Now applying V ´µ�¹ this is equivalent to the condition

� NÍ�� G¶Q ÅÇÆ�ÈÎÈ § ] ¾ � 7 ÊÏ ¹ ¨ ) * "SN V ´À ¹ � D G8�ÐQ
since V ´µ ¹ � D G8�o* V ´À ¹ � D G�� .
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We chose � N �� G Q�� ³ h ¹± ¹ and v G satisfying:

1.
��� � � ¦ l ± ¹ p l h ¹ p is the least inaccessible cardinal of� N½�� G Q

above `�´µ©¹ ;
2. v G is � N �� G°Q

-generic for �cbedfd �(�g
 \ [ � where[ * ��� � � ¦ l ± ¹ p l h ¹ p ;
3. � N E�G²Q N a G²Q¯* � N��� G²Q N v G¶Q ;

and such that D G is in the range of the natural map

V G W � N½�� G²Q X dfÁÃ  ³ h ¹± ¹ .
Varying the choice of � N½�� G¶Q

does not change

� N¼�� G²Q¯* dwÁÂ  ³ ´µ ¹
since dfÁÂ  ³ ´µ ¹ * dfÁÃ  ³ h ¹± ¹ .
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Therefore and this is really the key idea, for all
ordinals D , for all formulas " �FE¯� ,

� N E G Q N a G Q#) * "|NÌD Q
if and only if

� N �� G Q�ÅÇÆÉÈÎÈ § ] ¾ � 7 ÊÏ ¹ ¨F¨ ) * "SN V ´À ¹ � D �ÐQ .
Thus � ¥ @ ; � ¦ l ± ¹ p l h ¹ p � � N��� G¶Q N V ´À ¹ Q
and so � ¥ @ ; � ¦ l ± ¹ p l h ¹ p * � NÍ�� G²Q N V ´À ¹ Q .
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The inner model, � N �� G Q N V ´Àe¹ Q , is a member of the new
class of inner models. In fact it is in some ways close
to the inner model � N �� G²Q .
If ` ´À ¹ is the Woodin cardinal of � N �� G²Q then6¬« ÊÏ ¹ � � N �� G¶Q¯* 6¬« ÊÏ ¹ � � N �� G²Q N V ´À ¹ Q·

and ` ´ÀH¹ is a Woodin cardinal in � N �� G Q N V ´Àe¹ Q .
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However above ` ´ÀH¹ the two models differ dramatically
even though

� NÍ�� G Q ­ Ñ� � NÍ�� G Q N V ´Àe¹ Q .
1. Cofinally many cardinals above ` ´ÀH¹ are collapsed

in passing from � N �� G¶Q to � N �� G²Q N V ´Àe¹ Q .
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2. If
�

is any set of regular cardinals of � Nq�� G Q N V ´ÀH¹ Q
above ` ´Àe¹ and

�
has ordertype at least ` ´Àe¹ then

� N��� G²Q N V ´À ¹ Q � � N¼�� G¶Q N � Q
Thus

� Ñ� � N �� G¶Q and further

� N �� G²Q = � N �� G²Q N V ´ÀH¹ Q = � N �� G¶Q ­ .
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The analysis of
� ¥ @ ; � ¦�§ Z¡¨

is similar. It is more
complicated and based on the Mitchell-Steel inner
models � N½�� Q

for
�

many Woodin cardinals.

Suppose that there exists a proper class of Woodin
cardinals and that

� = �
is universally Baire. Then

� � � 
 � � ) * : ; <
and the analysis of

� ¥ @ ; � ¦©§ Zª¨
in turn generalizes to

an analysis of
� ¥ @ ; � ¦©§wÒ ¾ Zª¨

except that now the
analysis is not based on Mitchell-Steel inner models,� N½�� Q

, but on models in an hierarchy which include the
models we have just discussed.
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The detailed analysis of these models yields the
following theorem.

Theorem 27 Assume there exist a proper class of
Woodin cardinals.

Suppose that - � �
is
�

-recursive.

Then - is definable in the structure

��� �ÔÓ < ��
���� . � 
Moreover this latter calculation can be improved
which yields as a corollary the theorem on � ¥ .
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Let Õ�ÖH× = s �(� � � be the ideal of all nonstationary
subsets of

� � .
Theorem 28

� � ¥ �
Suppose that there exists a proper

class of Woodin cardinals.

Suppose that - � �
is
�

-recursive.

Then - is � �
definable in the structure,

�3� �(� � ��
 Õ ÖH× 

��� . � 
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Thus by Tarski’s theorem on the undefinability of
truth:

Theorem 29 Suppose that there exist a proper class
of Woodin cardinals,6 7 ) * ���#� $ !
and for each sentence " , either

(i) ���#� $ ! % & “
� ��� � � ) * " ”, or

(ii) ���#� $ ! %+& “
� ��� � � ) * , " ”.

Then � ¥ is false. � 
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Assuming the
�

Conjecture the inner models,� � � 
 � �
, where

� � �
is universally Baire define the

large cardinal hierarchy through
�

-logic and the
notion of " -closure.

But clearly the abstract definition of large cardinals
that we have used to calibrate this hierarchy is too
general.
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This in turn leads to the question of what kinds of
inner models might exist for very strong large cardinal
axioms. While the inner models,

¥ @ ;
, computed in

the inner models � � � 
 � �
provide a hierarchy of fine

structural models suitable for all determinacy axioms
(extending

: ; <
) these models do not actually have, at

least relative to their specified extender sequences, any
significantly large cardinals.
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In the third and final lecture, I shall discuss the
problem of finding inner models for large cardinal
axioms far stronger than those we have discussed;
for example huge cardinals and beyond.

56


