8. LOCAL L-FUNCTIONS: THE ARCHIMEDEAN CASE

When k£ = R or C we still have our family of local integrals
{T(s, W, W} or {T;(s,W,W")} or {¥(s, W, W', ®)}

for W € W(m,y), W' € W(r',4 1), and & € S(k™), now for 7 and
7" irreducible admissible generic representations of GL, (k) or G L, (k)
which are smooth and of moderate growth. In the current state of
affairs the local L-functions L(s,7 x 7') are not defined intrinsically
through the integrals, but rather extrinsically through the arithmetic
Langlands classification and then related to the integrals.

8.1. The arithmetic Langlands classification. Both £ = R and
k = C have attached to them Weil groups W) which play a role in
their local class field theory similar to that of the richer Gal(k/k) for
non-archimedean £.

When k£ = C, W = C* is simply the multiplicative group of C. The
only irreducible representations of W are thus characters.

When £ = R then Wy can be defined as Wx = C* U jC* where
jzj ' =z and j2 = —1 € C*. This is an extension of Gal(C/R) by
C* =Wkg.

1 — C~ > Wk » Gal(C/R) —— 1

Now Wx has both one and two dimensional irreducible representations.
Note that W@ ~ R*.

In rough terms, the arithmetic Langlands classification says there
are natural bijections between

A, (k) = { irreducible admissible H — modules for GL,(k)}
and

Gn(k) = {n — dimensional, semisimple representations of W}.
On the other hand, if

A(k) = { irreducible admissible smooth moderate growth

representations of GL,(k)}
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then the work of Casselman and Wallach gives a bijection between
A, (k) and A2 (k). Combining these, we can view the arithmetic Lang-
lands classification as giving a natural bijection

AX(k)  «— Au(k) +—  Gu(k)
T T =1(m).
7w =7(T) T

[

For example:
e If dim(7) = 1, then 7(7) is a character of GL, (k).

e If £k = R and 7 is irreducible, unitary, and dim(7) = 2, then 7 (7)
is a unitary discrete series representation of G Ly (RR).

o If 7 = @Ti with each 7; irreducible, then 7(7) is the Langlands
i=1
quotient of IndgL” (7(m) @ -+ @ m(1,)).
e If in addition 7 is generic, then

T = 7r(7‘) = IndgLn('fr(Tl) X W(TT))

is a full irreducible induced representation from characters of GL;(k)
and possible discrete series representations of GLy(k) if £ = R. (This
result is due to Vogan and is not part of the classification per se.)

8.2. The L-functions. Set
—s/2] (& =R
Ps)= 47 TG k=R
2(2m)~*I'(s) k=C

Then Weil attached to each semi-simple representation 7 of W, an
L-function: L(s, 7). For example:

e If 7 is an unramified character of W = k*, say 7(z) = |z|, then
L(s,7) =Tk(s+ 7).

e If dim(7) = 2 and 7 (7) is the holomorphic discrete series of weight

k for GLy(R), then L(s,7) = I'c (s + £51).

o If 7= @7‘, with each 7; irreducible, then L(s, 7) H L(s, ;).

i=1
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He also attached local e-factors. For example, if 7 is the character
7(z) = 7 N|z|, and + is the standard additive character of k, then

e(s,,9) =iV,

There are natural “twisted” L-functions and e-factors in this con-
text, for if 7 is an n-dimensional representation of Wj and 7’ in a
m-dimensional representation of Wy then the tensor product 7 ® 7' is
an mn-dimensional representation and we have thus defined L(s, 7®7")
and (s, 7 ® 7',1) as well.

Now return to our representations 7 of GL,(k) and 7' of GL,, (k).
Suppose that under the arithmetic Langlands classification we have m =
7(7) and 7' = 7(7') with 7 and 7' n-dimensional and m—dimensional
representations of W, respectively. Then we define the L-function for
7w and 7" through the classification:

L(s,mx7')=L(s,7®7")
e(s,mx ', ) =¢e(s, 7T ,7)
and we set
e(s,m x ', )L(1 — 8,7 x 7')
L(s,m x 7")
(s, T@T ) L(1—5,TRT)
N L(s,7®7") .

v(s,m x 7' ) =

Note that L(s, 7 x 7') is always an archimedean Euler factor of degree
nm.

8.3. The integrals (m < n). We now have to prove that this def-
inition of the L-function behaves well with respect to our integrals.
To analyze the integrals, we begin again with the properties of the
Whittaker functions.

Proposition 8.1. Let m be an wrreducible admissible generic represen-
tation of G L, (k) which is smooth of moderate growth. Then there is a
finite set of A-finite functions on A, say X (m) = {x:}, depending only
on m, such that for every W € W(m, 1) there exist Schwartz functions
¢; € S(k" ' x K) such that for a € A with a,, =1 and k € K we have

a

W k|= Xi(a)pi(aq(a), ..., an_1(a); k).
)

Qp—1 X(r



As in the non-archimedean case, the A-finite functions in X (7) are
related to the archimedean Jacquet module of 7 and then through the
classification to the associated representation 7 of Wy. This then gives
the same convergence estimates as before.

Proposition 8.2. Each local integral U ;(s, W, W') converges absolutely
for Re(s) > 0, and if m and 7' are both unitary they converge absolutely
for Re(s) > 1.

The non-archimedean statements on rationality and “bounded de-
nominators” are replaces by the following analysis.

Let M(mx7") = M(7®T') be the space of all meromorphic functions
#(s) satisfying:

e If P(s) € Cls] is a polynomial such that P(s)L(s,m x «') is holo-
morphic in the vertical strip S[a,b] = {s | a < Re(s) < b}. then
P(s)¢(s) is holomorphic and bounded in S|a, b].

As an exercise, one can show that ¢ € M(m x 7’) implies that the
¢(s)

is entire and bounded in vertical strips.
L(s,m x 7') P

ratio

Theorem 8.1. The integrals ¥ ;(s, W, W') exztend to meromorphic func-
tions of s and as such (s, W,\W') € M(m x 7'). In particular, the

ratios ;(s, W, W) = &)

are entire and bounded in vertical
L(s,m x 7")
strips.

This is more than just “bounded denominators” since it specifies
L(s,m x ') as a common denominator.

The same formal manipulations as in the non-archimedean show that
if we set
Ii(m x w') = (Uy(s, W, W') | W € W, ), W' € W(',¥7))

then Z;(m x 7') = Z;;1(m x 7') and hence Z(m x 7') = Z;(m x ©') is
independent of 5 and

I(r x ') C M(m x 7).

There is also a local functional equation, but unlike the non-archimedean
case, the “factor of proportionality” y(s,m x 7', 1) is specified a priori.

Theorem 8.2. We have the local functional equation
(1 —s, R(wn,m)w,W') = wp(=1)"y(s,m x 7', ) U (s, W, W)



with (s, m X 7,9) = (s, 7@ 7', 9).

The proofs of Theorems 8.1 and 8.2 are due to Jacquet and Shalika.
Their strategy is roughly as follows:

(i) Very interestingly, they essentially show that Theorem 8.2 (the
local functional equation) implies Theorem 8.1 (that the L-functions
is essentially the correct denominator). This takes place in the space

M(m x 7)

(ii) If m = 1, so 7' is a character, they reduce Theorem 8.2 to
previous results of Godement and Jacquet on standard L-functions for

GL,,, which in turn reduced to the cases of GL, x GL; and GL; x GL;
in that context.

(iii) If m = 2 and 7' is a discrete series representation of G'Ly(R),
then they embed 7’ C Ind(p; ® p2) and then reduce to (ii).

(iv) If m > 2 and 7' = Ind(m}| ®- - -®m.) with each =] either a charac-
ter or discrete series representation then they use a “multiplicativity”
argument to again reduce to (ii) or (iii).

8.4. Is the L-factor correct? We know that Z(7 x ') C M(w x '),
so that L(s,mxx") = L(s, 7®7") contains all poles of our local integrals.
We are left with the following two related questions.

1. Is L(s,m x 7') the minimal such factor?

2. Can we write

T
L(s,mx ') =Y (s, W;, W)
i=1
as a finite linear combination of local integrals?

To investigate these questions, Jacquet and Shalika had to first en-
large the family of local integrals. If A and A’ are continuous Whittaker
functionals on V, and Vs then their tensor product A =A®A\ isa con-
tinuous linear functional on the algebraic tensor product V, ® V,» which
extends continuously to the topological tensor product V, ¢, = Vi@V,
(Note that this completion is in fact the Casselman-Wallach canonical
completion of the algebraic tensor product. So to remain categorical,
this is natural.) Then for £ € V;®V,» we can define

We(g, h) = A(r(g) ® ' (R)€),
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so that W € W(r®7') = W(m,¥)@W(rn',v~"), and then

\Il(s,W)z/ Wg(<” ; ),h)|det(h)|s—“‘z’” dh.
Np (k)\GLm (k) n—m

Essentially the same arguments as before give Theorems 8.1 and 8.2
for these extended integrals. If we set

I(r@n") = (U(s, W) | W € W(n@7'))

then again we have Z(7®7') C M(m x ©'). But now they are able to
show that in fact these spaces are equal.

Theorem 8.3. Z(7®7') = M(m x 7).

So L(s,m x ©') is the correct denominator for the extended family
Z(nm®n'). This partially answers our first question. We also obtain a
partial answer to our second question.

Corollary 8.3.1. There exists W € IZ(n®n') such that ¥(s, W) =
L(s,m x 7).

In order to investigate our questions for our original family, with
Piatetski-Shapiro we showed the following continuity result.

Proposition 8.3. The functionals
U(s, W)
L(s,m x ')

is continuous on W(w®w"), uniformly for s in compact subsets.

Wi—e(s, W)=

Since the algebraic tensor product W(m, v) @ W(x', 4 1) is dense in
W(n®n') and by the above corollary there exists W € W(r®') with
e(s, W) =1 we then obtain the following result.

Corollary 8.3.2. For each sy € C there exist W € W(m,¢) and W' €
W(r' 4™t such that

U(s, W, W'
Vs, WW)

L(s,m x 7")

Moreover, one can take W and W' to be K -finite Whittaker functions.

e(so, W, W') =

So L(s,m x «') is precisely the archimedean Euler factor of degree
nm determined by the poles of original family of integrals Z(m x 7').
This finally answers question 1.
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As for question 2, the answer is more ambiguous. There are definitive
results only in the cases of m = n and m = n — 1. In the case where 7
and 7’ are both unramified, Stade has done the archimedean unramified
calculation.

Theorem 8.4. Ifn =m orn = m—1 and both w and ' are unramified
then
\I’ o 10 (Do —
L(s,m x 7') = (S’W’WO’ ) m=n
U(s, We, W') m=n-—1

where W°, W'°, and ®° are all normalized and unramified.

This has been generalized by Jacquet and Shalika, utilizing the last
corollary.

Theorem 8.5. If m = n or m = n —1 then there are finite collections
of K-finite Whittaker functions W; € W(m, ) and W] € W(x',¢1)
and possibly ®; € S(k™) such that

Ei‘I’(S,V%,Wi’, ®,) m=n
L(s,m x ') = -
Zi\ll(sam/iawfi’) m=n-—1

It is somewhat widely believed that this last result will not extend
to m < n — 2, even if one relaxes the K-finiteness condition.

REFERENCES

[1] J.W. Cogdell and LI. Piatetski-Shapiro, Remarks on Rankin-Selberg convolu-
tions. Contributions to Automorphic Forms, Geometry and Number Theory
(Shalikafest 2002) (H. Hida, D. Ramakrishnan, and F. Shahidi, eds.), Johns
Hopkins University Press, Baltimore, to appear.

[2] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Springer
Lecture Notes in Mathematics, No.260, Springer-Verlag, Berlin, 1972.

[3] H. Jacquet and J. Shalika, Rankin-Selberg convolutions: Archimedean theory.
Festschrift in Honor of I.I. Piatetski-Shapiro, Part I, Weizmann Science Press,
Jerusalem, 1990, 125-207.

[4] R.P. Langlands, On the classification of irreducible representations of real alge-
braic groups. Representation Theory and Harmonic Analysis on Semisimple Lie
Groups, AMS Mathematical Surveys and Monographs, No.31, 1989, 101-170.

[5] E. Stade, Mellin transforms of GL(n,R) Whittaker functions. Amer. J. Math.
123 (2001), 121-161.

[6] E. Stade, Archimedean L-factors on GL(n) x GL(n) and generalized Barnes
integrals. Israel J. Math. 127 (2002), 201-219.

[7] J. Tate, Number theoretic background. Proc. Symp. Pure Math. 33, part 2,
(1979), 3-26.



