8. Local L-functions: the archimedean case

When $k = \mathbb{R}$ or \mathbb{C} we still have our family of local integrals

$$\{\Psi(s, W, W')\}\$$
or $\{\Psi_i(s, W, W')\}\$ or $\{\Psi(s, W, W', \Phi)\}\$

for $W \in \mathcal{W}(\pi, \psi)$, $W' \in \mathcal{W}(\pi', \psi^{-1})$, and $\Phi \in \mathcal{S}(k^n)$, now for π and π' irreducible admissible generic representations of $GL_n(k)$ or $GL_m(k)$ which are smooth and of moderate growth. In the current state of affairs the local L-functions $L(s, \pi \times \pi')$ are not defined intrinsically through the integrals, but rather extrinsically through the arithmetic Langlands classification and then related to the integrals.

8.1. The arithmetic Langlands classification. Both $k = \mathbb{R}$ and $k = \mathbb{C}$ have attached to them Weil groups W_k which play a role in their local class field theory similar to that of the richer $Gal(\overline{k}/k)$ for non-archimedean k.

When $k = \mathbb{C}$, $W_{\mathbb{C}} = \mathbb{C}^{\times}$ is simply the multiplicative group of \mathbb{C} . The only irreducible representations of $W_{\mathbb{C}}$ are thus characters.

When $k=\mathbb{R}$ then $W_{\mathbb{R}}$ can be defined as $W_{\mathbb{R}}=\mathbb{C}^{\times}\cup j\mathbb{C}^{\times}$ where $jzj^{-1}=\overline{z}$ and $j^2=-1\in\mathbb{C}^{\times}$. This is an extension of $Gal(\mathbb{C}/\mathbb{R})$ by $\mathbb{C}^{\times}=W_{\mathbb{C}}$.

$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow W_{\mathbb{R}} \longrightarrow Gal(\mathbb{C}/\mathbb{R}) \longrightarrow 1$$

Now $W_\mathbb{R}$ has both one and two dimensional irreducible representations. Note that $W_\mathbb{R}^{ab}\simeq \mathbb{R}^\times$.

In rough terms, the arithmetic Langlands classification says there are natural bijections between

$$\mathcal{A}_n(k) = \{ \text{ irreducible admissible } \mathcal{H} - \text{modules} \text{ for } GL_n(k) \}$$
 and

$$\mathcal{G}_n(k) = \{n - \text{dimensional, semisimple representations of } W_k\}.$$

On the other hand, if

$$\mathcal{A}_n^{\infty}(k) = \{ \text{ irreducible admissible smooth moderate growth representations of } GL_n(k) \}$$

then the work of Casselman and Wallach gives a bijection between $\mathcal{A}_n(k)$ and $\mathcal{A}_n^{\infty}(k)$. Combining these, we can view the arithmetic Langlands classification as giving a natural bijection

$$\begin{array}{ccccc} \mathcal{A}_n^{\infty}(k) & \stackrel{\sim}{\longleftrightarrow} & \mathcal{A}_n(k) & \stackrel{\sim}{\longleftrightarrow} & \mathcal{G}_n(k) \\ \pi & & \longrightarrow & \tau = \tau(\pi). \\ \pi = \pi(\tau) & \longleftarrow & \tau \end{array}$$

For example:

- If $\dim(\tau) = 1$, then $\pi(\tau)$ is a character of $GL_1(k)$.
- If $k = \mathbb{R}$ and τ is irreducible, unitary, and $\dim(\tau) = 2$, then $\pi(\tau)$ is a unitary discrete series representation of $GL_2(\mathbb{R})$.
- If $\tau = \bigoplus_{i=1}^{r} \tau_i$ with each τ_i irreducible, then $\pi(\tau)$ is the Langlands quotient of $Ind_Q^{GL_n}(\pi(\tau_1) \otimes \cdots \otimes \pi(\tau_r))$.
 - If in addition π is generic, then

$$\pi = \pi(\tau) = Ind_Q^{GL_n}(\pi(\tau_1) \otimes \cdots \otimes \pi(\tau_r))$$

is a full irreducible induced representation from characters of $GL_1(k)$ and possible discrete series representations of $GL_2(k)$ if $k = \mathbb{R}$. (This result is due to Vogan and is not part of the classification per se.)

8.2. The L-functions. Set

$$\Gamma_k(s) = \begin{cases} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) & k = \mathbb{R} \\ 2(2\pi)^{-s} \Gamma(s) & k = \mathbb{C} \end{cases}.$$

Then Weil attached to each semi-simple representation τ of W_k an L-function: $L(s,\tau)$. For example:

- If τ is an unramified character of $W_k^{ab} = k^{\times}$, say $\tau(x) = |x|_k^r$, then $L(s,\tau) = \Gamma_k(s+r)$.
- If dim $(\tau) = 2$ and $\pi(\tau)$ is the holomorphic discrete series of weight k for $GL_2(\mathbb{R})$, then $L(s,\tau) = \Gamma_{\mathbb{C}}\left(s + \frac{k-1}{2}\right)$.

• If
$$\tau = \bigoplus_{i=1}^r \tau_i$$
 with each τ_i irreducible, then $L(s, \tau) = \prod_{i=1}^r L(s, \tau_i)$.

He also attached local ε -factors. For example, if τ is the character $\tau(x) = x^{-N}|x|_k^t$ and ψ is the standard additive character of k, then $\varepsilon(s,\tau,\psi) = i^N$.

There are natural "twisted" L-functions and ε -factors in this context, for if τ is an n-dimensional representation of W_k and τ' in a m-dimensional representation of W_k then the tensor product $\tau \otimes \tau'$ is an mn-dimensional representation and we have thus defined $L(s, \tau \otimes \tau')$ and $\varepsilon(s, \tau \otimes \tau', \psi)$ as well.

Now return to our representations π of $GL_n(k)$ and π' of $GL_m(k)$. Suppose that under the arithmetic Langlands classification we have $\pi = \pi(\tau)$ and $\pi' = \pi(\tau')$ with τ and τ' n-dimensional and m-dimensional representations of W_k respectively. Then we **define** the L-function for π and π' through the classification:

$$L(s, \pi \times \pi') = L(s, \tau \otimes \tau')$$
$$\varepsilon(s, \pi \times \pi', \psi) = \varepsilon(s, \tau \otimes \tau', \psi)$$

and we set

$$\gamma(s, \pi \times \pi', \psi) = \frac{\varepsilon(s, \pi \times \pi', \psi) L(1 - s, \widetilde{\pi} \times \widetilde{\pi}')}{L(s, \pi \times \pi')}$$
$$= \frac{\varepsilon(s, \tau \otimes \tau', \psi) L(1 - s, \widetilde{\tau} \otimes \widetilde{\tau}')}{L(s, \tau \otimes \tau')}.$$

Note that $L(s, \pi \times \pi')$ is always an archimedean Euler factor of degree nm.

8.3. The integrals (m < n). We now have to prove that this definition of the L-function behaves well with respect to our integrals. To analyze the integrals, we begin again with the properties of the Whittaker functions.

Proposition 8.1. Let π be an irreducible admissible generic representation of $GL_n(k)$ which is smooth of moderate growth. Then there is a finite set of A-finite functions on A, say $X(\pi) = \{\chi_i\}$, depending only on π , such that for every $W \in \mathcal{W}(\pi, \psi)$ there exist Schwartz functions $\phi_i \in \mathcal{S}(k^{n-1} \times K)$ such that for $a \in A$ with $a_n = 1$ and $k \in K$ we have

$$W\left(\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_{n-1} \\ & & & 1 \end{pmatrix} k \right) = \sum_{X(\pi)} \chi_i(a)\phi_i(\alpha_1(a), \dots, \alpha_{n-1}(a); k).$$

As in the non-archimedean case, the A-finite functions in $X(\pi)$ are related to the archimedean Jacquet module of π and then through the classification to the associated representation τ of W_k . This then gives the same convergence estimates as before.

Proposition 8.2. Each local integral $\Psi_j(s, W, W')$ converges absolutely for $Re(s) \gg 0$, and if π and π' are both unitary they converge absolutely for $Re(s) \geq 1$.

The non-archimedean statements on rationality and "bounded denominators" are replaces by the following analysis.

Let $\mathcal{M}(\pi \times \pi') = \mathcal{M}(\tau \otimes \tau')$ be the space of all meromorphic functions $\phi(s)$ satisfying:

• If $P(s) \in \mathbb{C}[s]$ is a polynomial such that $P(s)L(s, \pi \times \pi')$ is holomorphic in the vertical strip $S[a, b] = \{s \mid a \leq Re(s) \leq b\}$. then $P(s)\phi(s)$ is holomorphic and bounded in S[a, b].

As an exercise, one can show that $\phi \in \mathcal{M}(\pi \times \pi')$ implies that the ratio $\frac{\phi(s)}{L(s, \pi \times \pi')}$ is entire and bounded in vertical strips.

Theorem 8.1. The integrals $\Psi_j(s, W, W')$ extend to meromorphic functions of s and as such $\Psi_j(s, W, W') \in \mathcal{M}(\pi \times \pi')$. In particular, the ratios $e_j(s, W, W') = \frac{\Psi_j(s, W, W')}{L(s, \pi \times \pi')}$ are entire and bounded in vertical strips.

This is more than just "bounded denominators" since it specifies $L(s, \pi \times \pi')$ as a common denominator.

The same formal manipulations as in the non-archimedean show that if we set

 $\mathcal{I}_j(\pi \times \pi') = \langle \Psi_j(s, W, W') \mid W \in \mathcal{W}(\pi, \psi), W' \in \mathcal{W}(\pi', \psi^{-1}) \rangle$ then $\mathcal{I}_j(\pi \times \pi') = \mathcal{I}_{j+1}(\pi \times \pi')$ and hence $\mathcal{I}(\pi \times \pi') = \mathcal{I}_j(\pi \times \pi')$ is independent of j and

$$\mathcal{I}(\pi \times \pi') \subset \mathcal{M}(\pi \times \pi').$$

There is also a local functional equation, but unlike the non-archimedean case, the "factor of proportionality" $\gamma(s, \pi \times \pi', \psi)$ is specified a priori.

Theorem 8.2. We have the local functional equation

$$\widetilde{\Psi}(1-s, R(w_{n,m})\widetilde{W}, \widetilde{W}') = \omega_{\pi'}(-1)^{n-1}\gamma(s, \pi \times \pi', \psi)\Psi(s, W, W')$$

with
$$\gamma(s, \pi \times \pi', \psi) = \gamma(s, \tau \otimes \tau', \psi)$$
.

The proofs of Theorems 8.1 and 8.2 are due to Jacquet and Shalika. Their strategy is roughly as follows:

- (i) Very interestingly, they essentially show that Theorem 8.2 (the local functional equation) *implies* Theorem 8.1 (that the *L*-functions is essentially the correct denominator). This takes place in the space $\mathcal{M}(\pi \times \pi')$
- (ii) If m=1, so π' is a character, they reduce Theorem 8.2 to previous results of Godement and Jacquet on standard L-functions for GL_n , which in turn reduced to the cases of $GL_2 \times GL_1$ and $GL_1 \times GL_1$ in that context.
- (iii) If m=2 and π' is a discrete series representation of $GL_2(\mathbb{R})$, then they embed $\pi' \subset Ind(\mu_1 \otimes \mu_2)$ and then reduce to (ii).
- (iv) If m > 2 and $\pi' = Ind(\pi'_1 \otimes \cdots \otimes \pi'_r)$ with each π'_i either a character or discrete series representation then they use a "multiplicativity" argument to again reduce to (ii) or (iii).
- 8.4. Is the *L*-factor correct? We know that $\mathcal{I}(\pi \times \pi') \subset \mathcal{M}(\pi \times \pi')$, so that $L(s, \pi \times \pi') = L(s, \tau \otimes \tau')$ contains all poles of our local integrals. We are left with the following two related questions.
 - 1. Is $L(s, \pi \times \pi')$ the minimal such factor?
 - 2. Can we write

$$L(s, \pi \times \pi') = \sum_{i=1}^{r} \Psi(s, W_i, W_i')$$

as a finite linear combination of local integrals?

To investigate these questions, Jacquet and Shalika had to first enlarge the family of local integrals. If Λ and Λ' are continuous Whittaker functionals on V_{π} and $V_{\pi'}$ then their tensor product $\hat{\Lambda} = \Lambda \otimes \Lambda'$ is a continuous linear functional on the algebraic tensor product $V_{\pi} \otimes V_{\pi'}$ which extends continuously to the topological tensor product $V_{\pi\hat{\otimes}\pi'} = V_{\pi}\hat{\otimes}V_{\pi'}$. (Note that this completion is in fact the Casselman-Wallach canonical completion of the algebraic tensor product. So to remain categorical, this is natural.) Then for $\xi \in V_{\pi}\hat{\otimes}V_{\pi'}$ we can define

$$W_{\xi}(g,h) = \hat{\Lambda}(\pi(g) \otimes \pi'(h)\xi),$$

so that $W_{\xi} \in \mathcal{W}(\pi \hat{\otimes} \pi') = \mathcal{W}(\pi, \psi) \hat{\otimes} \mathcal{W}(\pi', \psi^{-1})$, and then

$$\Psi(s,W) = \int_{N_m(k)\backslash GL_m(k)} W_{\xi} \begin{pmatrix} h \\ I_{n-m} \end{pmatrix}, h |\det(h)|^{s-\frac{n-m}{2}} dh.$$

Essentially the same arguments as before give Theorems 8.1 and 8.2 for these extended integrals. If we set

$$\mathcal{I}(\pi \hat{\otimes} \pi') = \langle \Psi(s, W) \mid W \in \mathcal{W}(\pi \hat{\otimes} \pi') \rangle$$

then again we have $\mathcal{I}(\pi \hat{\otimes} \pi') \subset \mathcal{M}(\pi \times \pi')$. But now they are able to show that in fact these spaces are equal.

Theorem 8.3. $\mathcal{I}(\pi \hat{\otimes} \pi') = \mathcal{M}(\pi \times \pi')$.

So $L(s, \pi \times \pi')$ is the correct denominator for the extended family $\mathcal{I}(\pi \hat{\otimes} \pi')$. This partially answers our first question. We also obtain a partial answer to our second question.

Corollary 8.3.1. There exists $W \in \mathcal{I}(\pi \hat{\otimes} \pi')$ such that $\Psi(s, W) = L(s, \pi \times \pi')$.

In order to investigate our questions for our original family, with Piatetski-Shapiro we showed the following continuity result.

Proposition 8.3. The functionals

$$W \mapsto e(s, W) = \frac{\Psi(s, W)}{L(s, \pi \times \pi')}$$

is continuous on $\mathcal{W}(\pi \hat{\otimes} \pi')$, uniformly for s in compact subsets.

Since the algebraic tensor product $W(\pi, \psi) \otimes W(\pi', \psi^{-1})$ is dense in $W(\pi \hat{\otimes} \pi')$ and by the above corollary there exists $W \in W(\pi \hat{\otimes} \pi')$ with $e(s, W) \equiv 1$ we then obtain the following result.

Corollary 8.3.2. For each $s_0 \in \mathbb{C}$ there exist $W \in \mathcal{W}(\pi, \psi)$ and $W' \in \mathcal{W}(\pi', \psi^{-1})$ such that

$$e(s_0, W, W') = \frac{\Psi(s, W, W')}{L(s, \pi \times \pi')} \neq 0.$$

Moreover, one can take W and W' to be K-finite Whittaker functions.

So $L(s, \pi \times \pi')$ is precisely the archimedean Euler factor of degree nm determined by the poles of original family of integrals $\mathcal{I}(\pi \times \pi')$. This finally answers question 1.

As for question 2, the answer is more ambiguous. There are definitive results only in the cases of m=n and m=n-1. In the case where π and π' are both unramified, Stade has done the archimedean unramified calculation.

Theorem 8.4. If n = m or n = m-1 and both π and π' are unramified then

$$L(s, \pi \times \pi') = \begin{cases} \Psi(s, W^{\circ}, W'^{\circ}, \Phi^{\circ}) & m = n \\ \Psi(s, W^{\circ}, W'^{\circ}) & m = n - 1 \end{cases}$$

where W° , W'° , and Φ° are all normalized and unramified.

This has been generalized by Jacquet and Shalika, utilizing the last corollary.

Theorem 8.5. If m = n or m = n - 1 then there are finite collections of K-finite Whittaker functions $W_i \in \mathcal{W}(\pi, \psi)$ and $W_i' \in \mathcal{W}(\pi', \psi^{-1})$ and possibly $\Phi_i \in \mathcal{S}(k^n)$ such that

$$L(s, \pi \times \pi') = \begin{cases} \sum_{i} \Psi(s, W_i, W_i', \Phi_i) & m = n \\ \sum_{i} \Psi(s, W_i, W_i') & m = n - 1 \end{cases}.$$

It is somewhat widely believed that this last result will not extend to $m \leq n-2$, even if one relaxes the K-finiteness condition.

References

- [1] J.W. Cogdell and I.I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions. Contributions to Automorphic Forms, Geometry and Number Theory (Shalikafest 2002) (H. Hida, D. Ramakrishnan, and F. Shahidi, eds.), Johns Hopkins University Press, Baltimore, to appear.
- [2] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Springer Lecture Notes in Mathematics, No.260, Springer-Verlag, Berlin, 1972.
- [3] H. Jacquet and J. Shalika, *Rankin-Selberg convolutions: Archimedean theory*. Festschrift in Honor of I.I. Piatetski-Shapiro, Part I, Weizmann Science Press, Jerusalem, 1990, 125–207.
- [4] R.P. Langlands, On the classification of irreducible representations of real algebraic groups. Representation Theory and Harmonic Analysis on Semisimple Lie Groups, AMS Mathematical Surveys and Monographs, No.31, 1989, 101–170.
- [5] E. Stade, Mellin transforms of $GL(n, \mathbb{R})$ Whittaker functions. Amer. J. Math. **123** (2001), 121–161.
- [6] E. Stade, Archimedean L-factors on $GL(n) \times GL(n)$ and generalized Barnes integrals. Israel J. Math. 127 (2002), 201–219.
- [7] J. Tate, Number theoretic background. Proc. Symp. Pure Math. 33, part 2, (1979), 3-26.