7. THE UNRAMIFIED CALCULATION

In this lecture I would like to calculate L(s,m x #') when both =
and 7’ are unramified, that is, they both have vectors fixed under their
respective maximal compact subgroups GL,,(O) and GL,,(0). We will
do this by explicitly computing the local integral ¥(s, W°, W'®) for W°
and W'° the normalized K-fixed Whittaker functions. This calculation
is similar to and motivated by the calculation of the p-Euler factor for
L(s, f) for f a classical cusp form. Recall that in the classical case of
f € Sk(SLs(Z)) to be able to compute the p-Euler factor for L(s, f)
we needed to know two things:

(i) that f was an eigen-function for all Hecke operators T}, or T),;
(ii) the recursion among the T, for a fixed p.

Now again let £ be a non-archimedean local field of characteristic 0
with ring of integers O, maximal ideal p and uniformizer w. Let

Hix = H(GLa(k)//K) = CZ(GLn(k)//GL2(0))

be the spherical Hecke algebra for GL, (k) consisting of compactly sup-
ported functions on GL, (k) which are bi-K-invariant, as in Lecture 3.
This plays the role of the classical Hecke algebra in this context. It is
a convolution algebra as before. For each i, 0 < i < n, let ®; be the
characteristic function

®; = Char (GLn((’)) (m,- Im) GLn((’))>

so that w occurs in the first 7 diagonal entries. (For G = GL, and
k = Q,, ®; is the avatar of the classical Hecke operator 7,.) Then a
standard fact is:

Proposition 7.1. The spherical Hecke algebra Hy is a commutative
algebra and is generated by the ®; for 1 < i <n.

For any smooth representation (7, V;) of GL,(k) we have an action
of H or Hx on V, as a convolution algebra via

n(®)o = /G R OLUEY

Note that since 7 is smooth and ® has compact support, this is really
a finite sum. In the transition from classical modular forms to auto-
morphic representations and back, this corresponds to the action of the

classical Hecke operators on modular forms.
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7.1. Unramified representations. Now let (7, V) be an irreducible
admissible smooth generic representation of GL,, (k) which is unrami-
fied. Then it is known that

GLy(k
m=Indy P (1 ® -+ ® pin)

is a full induced representation from the Borel subgroup B(k) of un-
ramified characters p; of £*. Here unramified means that each p;
is invariant under the maximal compact subgroup O* C k*. Since
k* =[] w?O*, each character y; is completely determined by its value
wi(w) € C*. Thus in turn 7 will be completely determined by the n
complex numbers
{p(@), ..., pn(w)}
which can be encoded in a diagonal matrix

pi (@)
A = € GL,(C).
fin (@)
These parameters, whether viewed as n non-zero complex numbers, the

matrix A, € GL,(C) or the conjugacy class [A4,] C GL,(C) are the
Satake parameters of the unramified representation 7.

Since (7, V;) is unramified, then there is a unique (up to scalar multi-
ples) non-zero K-fixed vector v° € V.. If & € H, the spherical Hecke
algebra, then 7(®)v° will again be K-fixed. Thus we obtain

T(P)v° = A (P)v°

with A, : Hx — C a character of H as a convolution algebra. Thus
v° is our local Hecke eigen-function.

For m = Ind(p; ® - -+ ® py) it is easy to compute this character on
the generators ®; of H . As in the classical case, we will need to know
how to decompose the associated double coset into single cosets.

For each J € Z", say J = (j1,...,7n), let
it
w’ = € GL,(k).
win
So if we set n; = (1,...,1,0,...,0) € Z™ with the first 7 entries of 1

and the others 0, then ®; is the characteristic function of Kw™ K. To
decompose this double coset into single ones, let us set

I = {e:(el,...,en) €T | ¢ € {0,1},Zej:z'}



and for each ¢ € I; let
N(O,¢e) = NO)Nw*Kw™ .

KoK = H H nwtK.

€€l; neN(O)/N(O,e)

Lemma 7.1.

Now let f° be the K-fixed vector in Ind(u; ® - -- ® p,) normalized
so that f°(e) = 1. Then we have

(m(®:)f°)(e) = A(®:) f°(e) = An(®i).

On the other hand, we can do the explicit computation in the induced
model. By definition

n

fo(nak) = 65" (a) [ [ milas) £°(e) = 65 (a) Huz a;)

i=1
ai
forn € N,(k), a = € An(k), and k € K,,. Then we can

an
compute

r@ = [ atorea= [ rod
=2 > [

e€l; neN(O)/N(O,e)

=D _IN(O)/N(0,6)|5 (= Hu]

eel;

An elementary computation then gives
N(O)/N(0, )6, (@) = ¢ "~/
so that

(n(®@:)f°)(e) = ¢ 2y ][ i(w)e

e€l; j=1
= ¢ D20 (4 (), ..., pn (@)

where o; is the " elementary symmetric polynomial in the p;(w).

Comparing our two expressions for (7(®;)f°)(e) we obtain
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Proposition 7.2. For m = Ind(u ® - - - ® py,) unramified

Ar((I)Z) = qi(nii)ﬂai(lu'l (w)’ R ﬂ'n(w))

This computes the Hecke eigen-values in terms of the Satake param-
eters of 7.

7.2. Unramified Whittaker functions. The analogue of the classi-
cal recursion relation for the Hecke operators T),» can now be employed
to compute a formula for the unramified Whittaker function W*° that
occurs in our integrals. For GL,, this was first done by Shintani, who
we follow.

Take v : k — C our additive character to also be unramified and
non-trivial, so ¥(O) = 1 but ¢¥(w ') # 1. Let W° € W(m, ¢) be the K-
fixed Whittaker function in W(m, ). By the Iwasawa decomposition,
any g € GL,(k) can be written

g=nak € NAK with a=w’ € A
for some J € Z"™. Then
We(g) = W°(n@w’k) = (n)W°(w”).

So it suffices to compute the values W°(ww”). The same calculation that
gave the “rapid decrease” of W on A in the GLy(k) case now gives

W(w’) =0 unless j; >jp > > j,.
We next do an explicit calculation of the action of each ®; € H in
the Whittaker model. We still have that
(1(@)W°) (@) = Ar(@)W° (w”)

for all J, with an explicit formula for A(®;). Computing in the Whit-
taker model we have

@IV = [ W) do

= Z Z W°(w’ nw")

e€l; neN(0O)/N(O,e)

— Z Z w(’anw_J)Wo(wJ—i—e).

e€l; neN(O)/N(O,e)
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Since j; > --- > j,, we have that @w/nw=’/ € N(O) so that the value
of ¥ on this element is 1. Hence

(m(®:)W =Y _IN(O)/N(0,e)|W*(w’*)
ecl;
_26 1/2 z(n z/ZWo( J+e).
ecl;

If we then combine our two expressions for (7(®;)W°)(w’) we obtain
our recursion.

Proposition 7.3. For the unramified Whittaker function in W(m, 1)
we have the recursion

An(@)W(w”) = ¢ 23" 5,2 (@)W (w7 ).

eel;

The solution to this recursion is quite interesting. It involves the
characters of finite dimensional representations of GL,(C). The n-
tuples J = (j1,...,Jn) wWith j; > --- > j, are the possible highest
weights for the finite dimensional representations of GL,(C). Let p,
denote the finite dimensional representation of highest weight J and
let x, = Tr(p,) be its character. Then many things are known about
these characters, for example, from the formula for the decomposition
of the tensor product of two finite dimensional representations we also

obtain a recursion
Xs = ZXJ+5
eel;
similar to the recursion for W°(w?’). Since the x, are class functions
on GL,(C), it makes sense to evaluate them on our Satake class A,

for m. For example, since p,, is the i*" exterior power of the standard
representation of G L, we find that

Xos (Ar) = 03(11 (@), -, pn (@) = 72N (@),

Utilizing these facts from finite dimensional representation theory it
is then a simple matter to solve the recursion for the W°(w?’) in terms
of the x,(A) and obtain Shintani’s formula.

Proposition 7.4. W°(w’) = 5}3/:(13‘])% (Ar).
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7.3. Calculating the integral. We now return to our local integral.
We consider the case m < n and 7, 7', and v all unramified. Let W° €
W(r, ) and W'° € W(r',4 ') be the normalized K-fixed Whittaker
functions computed above. We have

U(s, W, W) = / e (h I ) W' (h)| det(h)|* 7" dh.

N (k)\GLm (k)

Use the Iwasawa decomposition to write GL,, = N, A, K,, so that
h =nw’k and dh = dn 63! (w”) dk. Then

U(s,W°, W")
o [’ oo J J\|s—P=m o1 ]
=2 W7 ) W@l det(@) 1 g ().
Jezm

J
Now W'°(w’) = 0 unless j; > -+ > j,, and W° (w I ) -°

unless j; > -+ > j,, > 0. Moreover, |det(w”’)| = ¢~ where |J| =
ji+ -+ Jm- So our integral becomes

U(s,W°, W)
o w’ 1o _J\ —|J|(s—252) g1 __J
= E w I W" (w?’)q P ﬁBm(w ).
12> jm >0 e

We next insert the formula from Proposition 7.4 and use the elementary

fact that
J
6}13/: (w I ) 6];;/2(13']) — q*u|n_2m

to obtain
(s, W2, W) = Z X(2,0) (Ar)x, (Aﬂ’)q_ws
J1223m>0
where (J,0) = (j1,- -+, Jm,0, ..., 0) represents J filled out to be a vector

in Z™.

We next use some fairly standard facts from the finite dimensional
representation theory of GL,(C), namely

X (1,0 (Dn)x;(Dm) = Tr(p(J,O) (Dr) ® p, (D)),

S™ Tr(p (Da) @ p,(Dn)) = Tr(S"(Dy © Dy)),

j12--2jm 20
|J|=r



and

iTr(S’"(D))X’" =det(l — XD)™!,

where S™(D) is the r** symmetric power of D. Applying these with
D, = A, and D,, = A, finishes our calculation of the local integral.

Proposition 7.5. If w, @', and v are all unramified, then

(s, W, W) =det(] — ¢ *Ar @ Aw) ' = [[(1 = pi(@)psf(w)q*) .
1,J
Since L(s, 7 x 7') is the minimal inverse polynomial in ¢~* killing all
poles of the family of local integrals this implies
det(I —q *A; ® Ap)|L(s,m x ©') L.

Then comparing the poles of this factor with the potential poles coming
from the asymptotics of W° and W’° as the simple roots go to zero from
Lecture 6 gives us our result.

Theorem 7.1. If 7w, ', and v are all unramified, then
Lis,m x7')=det(I — ¢ *A, @ Ap) ™' = U(s, W°, W'°).

Note that the degree of this Euler factor is mn. Moreover,

L(s,m) = det(I — ¢°A;) "' = [[(1 - pa(w)g™*)~"!

is an Euler factor of degree n. The same result holds for GL,, x GL,.
One then takes for the Schwartz function ® € S(k™) the characteristic
function ®° of O™ C k".

Since the factor (s, m x 7', ) satisfies the local functional equation
(1 — 5, R(wnm)W°, W") (s, W, W")
L(1—s,7mx7) L(s,m x 7')

we can conclude the following corollary.

= wp(—1)"Te(s,m x 7', 1))

Corollary 7.1.1. If w, 7', and v are all unramified, then
e(s,mx 7' ) =1.

In particular, taking ' to be the trivial character of GL, we see that if
7 is unramified then its conductor f(m) = 0.

Finally, as a second corollary we obtain the Jacquet-Shalika bounds
on the Satake parameters.
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Corollary 7.1.2. Suppose that 7 is a irreducible unitary generic un-
ramified representation of GLy(k), m ~ Ind(u1 @ -+ ® py). Then the
Satake parameters p;(w) satisfy

g ? < |uwi(w)| < ¢/~

To see this, we apply the GL,, x GL, unramified calculation to = and
7' = 7, the complex conjugate representation. Then A, = A, = A,
and

det(I — ¢ *A, @ AU (s, W, W'°, ®°) = 1.
The local integral is absolutely convergent for Re(s) > 1 since 7 is
unitary. Then

det(I — ¢ *A, ® A;) #0 for Re(s)> 1.

This determinant has as a factor (1 — |u;(w@)|?q™*), so this also cannot
vanish for Re(s) > 1. Hence

i(@)| < 2.
Applying the same argument to 7 gives

|i(w)|
since Az = A-'. Thus we have the result.

< q1/2
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