4. FOURIER EXPANSIONS AND MULTIPLICITY ONE THEOREMS

We now start with results which are often GL,, specific. So we let G =
G, = GL,, (however one should also keep in mind G = GL,, x GL,,)
and still take k& to be a number field.

4.1. The Fourier expansion of a cusp form. Let (7,V;) be a
smooth cuspidal representation, so V;; C AX. Let ¢ € V; be a smooth
cusp form.

We begin with G = G L. Our translation subgroup is

AT

For any g € G(A) the function

(6 1))

is a smooth function of z € A which is periodic under k. Since k\A is
a compact abelian group we will have an abelian Fourier expansion of
this function.

For each continuous character ¢ : k\A — C we define a 1-Fourier
coefficient, or ¥-Whittaker function, of ¢ by
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ow(9) = /k\Aw (((1] 916) g) v i(x) da.

This function satisfies

oo (5 1)9) = 0Wisto),

Then by standard abelian Fourier analysis we have

i <<é f) g) = D Woul9)v(a)

YER\A

0(g) =Y Woul(g).
P

or

By standard duality theory, k/\K ~ k and is we fir one non-trivial
character 9 then any other is of the form ¢, (z) = ¢ (yz) for v € k, so

p(9) =D Wy, (9)-

v€k
1
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Since ¢ is cuspidal, for v = 0 we have

Ww,wo(g)=/k\A<p<(é :16)) dr =0

and for v # 0 it is an easy change of variables to see that

Wo @) =Wos (7 1) 9)

which gives for our Fourier expansion for G L,
_ 7 0
plg) = W, ((0 1) g)
yEEX
where we have set W, = W,,.
Now consider G = GL,,. The role of the translations is played by
the full maximal unipotent subgroup
1 ,’1}'1,2 *
N = Nn = n =

Tn—-1,n

0 1

which is now non-abelian. If we retain out fixed additive character v of
k\A from before, then 1 defines a (continuous) character of N(k)\/N(A)

1 3}'1,2 *

(n) = v o = P(@ra e+ Tnrm).
) Tn—1,n

0 1
The associated y-Whittaker function of ¢ is now

Wo(g) = Wyplg) = /N oy P9 )

which again satisfies W, (ng) = (n)W,(g) for all n € N(A). The
Fourier expansion of ¢ which is useful is

o= X w((79))

’YENn_l(k)\GLn_1 (k)

This is not hard to prove. It is essentially an induction based on
the above argument, begun by expanding about the last column of N,
which is abelian.



For G = G L3 one would begin with

1 x1 2o 1 T2 1 =
® L z3|g|=¢ L 3 1 g
1 1 1

and expand this as a function of <£2> € (k\A)?2. Remember that
3

((k\A)>)" ~ k? and that GLy(k) acts on k? with two orbits: {0}
and an open orbit (0,1) - GLy(k). The {0} orbit contributes 0 by
cuspidality and the open orbit can be parameterized by Py(k)\G Lo (k)
where Py = { (8 [1)> } = Stab((0,1)). One then expands the resulting
terms as functions of z; as before.

As I said, the proof is not hard. The difficult thing, if there is one,
is in recognizing that this is what one needs. This was recognized
independently by Piatetski-Shapiro and Shalika.

4.2. Whittaker models. Consider now the functions W = W,, which
appear in the Fourier expansion of our cusp forms ¢ € V;. These
are smooth functions on G(A) satisfying W(ng) = ¥ (n)W(g) for all
n € N(A). Let

W(m, ) ={W, | ¢ € Va}.

The group G(A) acts in this space by right translation and the map
¢ — W, intertwines V; —— W(m, ).

Note that since we can recover ¢ from W, through its Fourier expansion
we are guaranteed that W, # 0 for all ¢ # 0. The space W(m, ) is
called the Whittaker model of .

The idea of a Whittaker model makes sense over a local field (and
even a finite field). If we let k, be a local field (a completion of our
global field k) and let 1, be a non-trivial (continuous) additive char-
acter of k, then as before 1, defines a character of the local trans-
lations N(k,). Let W(1,) denote the full space of smooth functions
W : G(k,) — C which satisfy W (ng) = ¢,(n)W(g) for all n € N(k,).
This is the space of smooth Whittaker functions on G(k,) and G(k,)
acts on it by right translation.

If (my, V) is a smooth irreducible admissible representation of G(k,),
then an intertwining

Ve, = W(tby) given by &, — W,
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gives a Whittaker model W(m,, ¥,) of m,.

For a representation (m,, V;,) to have a Whittaker model it is neces-
sary and sufficient for V. to have a non-trivial (continuous) Whittaker
functional, that is , a continuous functional A, : V,, — C satisfying

A, (7Tv (n)&,) = 1/11;(”)/\@ (gv)
for all n € N(k,) and &, € V. A model &, — W, gives a functional
by
Ay (&) = We, (e)
and a functional A, gives a model by setting

Wﬁv (g) = Av (7Tv (g)&))

The fundamental result on local Whittaker models is due to Gelfand
and Kazhdan (v < oo) and Shalika (v|oo).

Theorem 4.1 (Local Uniqueness). Given (m,, Vy,) an irreducible ad-
missible smooth representation of G(k,) the space of (continuous) Whit-
taker functionals is at most one dimensional, that is, and w, has at most
one Whittaker model.

Remarks. (i) One proves this by showing that the space of Whit-
taker functions W(1),) is multiplicity free as a representation of G(k,).
Writing W(y,) = Ind(1,)* one shows that the intertwining algebra
of Bessel distributions B satisfying B(nigns) = ¢,(n1)B(g)1,(ng) is
commutative by exhibiting an anti-involution of the algebra that sta-
bilizes the individual distributions.

(ii)) When v|oo, if we worked simply with irreducible admissible repre-
sentations of the Hecke algebra #, then the space of (algebraic) Whit-
taker functionals on (V;,)x would have dimension n!, but only one ex-
tends continuously to V., with its (smooth moderate growth) Fréchet
topology.

(iii) Simultaneously, one shows that if 7, has a Whittaker model, then
so does its contragredient 7, and in fact

W(To, ;) = {W (g) = W (wn g™ | W € W(my, 1)}

1
where w,, denotes the long Weyl element w,, =
1

Definition 4.1. A representation (m,, Vy,) having a Whittaker model
s called generic.
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Of course, the same definition applies in the global situation. Note
that for G = GL, this notion is independent of the choice of (non-
trivial) v, or 1.

Now return to our smooth cuspidal representation (m, V), or in fact
any irreducible admissible smooth representation of G(A). If we factor
7 into its local components

7 ~Q'm with V=~V

then any Whittaker functional A on V, determines a family of compat-
ible Whittaker functionals A, on the V. by

Ay Ve, o @V =5V, 25 C

such that A = ®A,. Similarly, any suitable family {A,} of Whit-
taker functionals on the V. , where suitable means A, (&) = 1 for our
distinguished K,-fixed vectors & giving the restricted tensor product,
determines a global Whittaker functional A = ®A, on V; = ®'V,,.

The Local Uniqueness Theorem then has the following consequences.

Corollary 4.1.1 (Global Uniqueness). If 7 = ®'n, is any irreducible
admissible smooth representation of G(A) then the space of Whittaker

functionals of V; is at most one dimensional, that is, ™ has a unique
Whittaker model.

If (7, V;) is our cuspidal representation then we have seen that V
has a global Whittaker functional given by

Ap) = Wiy(e) = /N oy P

Corollary 4.1.2. If (7, V;) is cuspidal with m ~ &', then m and each
of its local components m, are generic.

A most important consequence for our purposes is:

Corollary 4.1.3 (Factorization of Whittaker Functions). If (w, Vy) is
a cuspidal representation with m ~ ®'m, and ¢ € V, such that under
the isomorphism V; ~ @'V, we have ¢ — Q&, (so ¢ is decomposable)
then

Wo(9) = [ [ We. (92).



The proof is essentially the following simple computation:
Wo(g) = Am(g)p) = (M) (@ (90)E0)

—HA Ty gv f’u Hva gv

Note once again that the cusp form ¢(g) itself does not factor.
The G(k)-invariance mixes the various places together. Only W,, fac-
tors for decomposable ¢. If f € S,,(SLy(Z)) is a classical Hecke
eigen-form of weight m for SLy(Z), with its usual Fourier expansion
f(2) =3 a,e*™% and f — ¢ is our lifted automorphic form, then ¢
is decomposable and the Whittaker function W,, factors. If we write
W, = Woo Wy then

Weo (ny 1) = (ny)™?e”>™ and W, (n 1) = ay,.

4.3. Multiplicity One for GL,. The uniqueness of the Whittaker
model is the key to the following result.

Theorem 4.2 (Multiplicity One). Let (mw, V) be a smooth irreducible
admissible (unitary) representation of GL,(A). Then its multiplicity
m(m) in the space of cusp forms is at most one.

This result was proven independently by Piatetski-Shapiro and Sha-
lika, based on the Fourier expansion and the global uniqueness of Whit-
taker models. Suppose we have two realizations of 7 in the space of
cusp forms:

Vi—=Vei CAY for i=1,2.
For £ € V. let ¢, and ¢, be the corresponding cusp forms. Then the
maps
§r i Wy, (e) = Ai(§)
give two Whittaker functionals on V. By uniqueness, there exists ¢ # 0
such that A; = ¢As. Then

Wy, (9) = Ai(m(g)€) = cAa(m(9)€) = W, (g)
so that

1g)=;le<(g ) )—CZWQ@((O 1>g>=cwz(g)-

But then V;1 N V;a # {0}. So by irreducibility V;, = V., that is,
m(r) = 1.
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4.4. Strong Multiplicity One for GL,,. Strong Multiplicity One was
originally due to Piatetski-Shapiro. His proof, which we will sketch
here, is a variant of the proof of Multiplicity One. We will give a
second proof due to Jacquet and Shalika based on L-functions later.

Theorem 4.3 (Strong Multiplicity One for GL,). Let (m,Vy,) and
(79, Vi,) be two cuspidal representations of GLy,(A). Decompose them
as m ~ ®'m, and ™ ~ ®'my,. Suppose that there is a finite set of
places S such that m, ~ 9, for allv ¢ S. Then (m, Vz,) = (7, V).

In place of the Whittaker model, Piatetski-Shapiro used a variant
known as the Kirillov model. To define this, let

P=p,={|" Y = Stab ((0,...,0,1))

denote the mirabolic subgroup of GL,. If we let (m,,V;,) be an ir-
reducible admissible generic representation of G(k,) with Whittaker
model W(m,,1,) then we can consider the restrictions W,(p,) of the
functions W, € W(n,, ) to P, = P(k,). The first surprising fact is:

Theorem 4.4. The map W, — W,|p, is injective, that is, if W, # 0
then W, (p,) # 0.

This is due to Bernstein and Zelevinsky if v < oo and Jacquet and
Shalika if v|co.

Definition 4.2. The (local) Kirillov model of a generic (m,, Vy,) is the
space of functions on P, defined by

K(my,0) = {Wo(pv) | Wy € W(my, %), Do € Py}

A second surprising fact is that no matter what the generic represen-
tation (m,, V;,) we begin with, the Kirillov models all have a common
P, sub-module, namely

indy? (1by) v < 00
(1) =
Indﬁ) (y)®  v|oo

When v|oo Jacquet and Shalika established this only for 7, a local
component of a cusp form. The result for v < oo is of course due to
Bernstein and Zelevinsky. This is a canonical space of functions on P,.



We may now sketch the proof of the Strong Multiplicity One theorem.
Let 7y, mo, and S be as in the statement of the theorem. As before,
our goal is to produce a common non-zero cusp form ¢ € V,, NV,,.

(i) Let P' = P, = P,Z, be the (n — 1,1) parabolic subgroup of
GL, (here Z, is still the center of GL,). Then P'(k)\P'(A) is dense
in GL,,(k)\GL,(A). So it suffices to find ¢; € V;, such that ¢,(p') =
o(p') for all p’ € P'(A).

(ii) Utilizing the Fourier expansion as before, it suffices to find non-
zero W; € W(m;, 1) such that Wy (p') = Wa(p').

(iii) Since w = wy, = wy, (by weak approximation) it suffices to find
non-zero W; such that Wi (p) = Wy(p) for all p € P(A), that is, to find
non-zero

W=W, =W, € K:(ﬂ'l,’(ﬁ) N K(Wg,l[}).

(iv) At v ¢ S we have 7y, >~ 79, so that
K(miwthy) = K(map, ) for v ¢ S.
At v € S we have
T(Yy) C K(mip%0) N K(mop, ) for veSs

which is a quite large intersection. So we may simply take any

W e HT(wq,) HI/C(Wi,v,¢v) C K(m1,9) N K(m2,v)

veS vgS

which is non-zero.

Now retrace the steps to obtain ¢ € V;, NV, forcing V,, = V,, as
before.

Remark. In Piatetski-Shapiro’s original proof, he had to require that
the set S consisted of finite places, since the result of Jacquet and
Shalika was not available at that time. Once it became available his
proof worked for general finite set S as well.
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