3. Automorphic Representations

We have defined our spaces of automorphic forms. Now we turn to our tools. We will analyze \mathcal{A} , \mathcal{A}^{∞} , or $L^2(\omega)$ as representation spaces for certain algebras or groups. Throughout we will let $G = GL_n$, although the results remain true for any reductive algebraic G, let k be a number field, and retain all notations from before.

- 3.1. (K-finite) automorphic representations. As we have noted the space \mathcal{A} of (K-finite) automorphic forms does not give a representation of $G(\mathbb{A})$. It will be a representation space for the global Hecke algebra \mathcal{H} .
- 3.1.1. The Hecke algebra. The global Hecke algebra \mathcal{H} will be a restricted tensor product of local Hecke algebras: $\mathcal{H} = \otimes' \mathcal{H}_v$. \mathcal{H} and each \mathcal{H}_v will be idempotented algebras under convolution. So there will be a directed family of fundamental idempotents $\{\xi_i\}$ such that

$$\mathcal{H} = \varinjlim_{i} \xi_{i} * \mathcal{H} * \xi_{i} = \bigcup_{i} \xi_{i} * \mathcal{H} * \xi_{i}$$

and

$$\mathcal{H}_v = \varinjlim_i \xi_{i,v} * \mathcal{H}_v * \xi_{i,v} = \bigcup_i \xi_{i,v} * \mathcal{H} * \xi_{i,v}.$$

Neither \mathcal{H} nor any \mathcal{H}_v will have an identity, but for each ξ_i the subalgebra $\xi_i * \mathcal{H} * \xi_i$ will have ξ_i as an identity.

(i) If $v < \infty$ is an archimedean place of k then $\mathcal{H}_v = C_c^{\infty}(G(k_v))$ is the algebra of smooth (locally compact) compactly supported functions on $G_v = G(k_v)$. It is naturally an algebra under convolution. For each compact open subgroup $L_v \subset G_v$ there is a fundamental idempotent

$$\xi_{L_v} = \frac{1}{Vol(L_v)} \mathfrak{X}_{L_v}$$

where \mathfrak{X}_{L_v} is the characteristic function of L_v . Then $\xi_{L_v} * \mathcal{H}_v * \xi_{L_v} = \mathcal{H}(G_v//L_v)$ is the algebra of L_v -bi-invariant compactly supported functions on G_v . In any representation of \mathcal{H}_v the idempotent ξ_{L_v} will act as a projection onto the L_v -fixed vectors. We will let ξ_v° denote the fundamental idempotent associated to the maximal compact subgroup K_v . Note that if $k = \mathbb{Q}$, $G = GL_2$, and $L_p = K_p = GL_2(\mathbb{Z}_p)$ then $\xi_p^{\circ} * \mathcal{H}_p * \xi_p^{\circ} = \mathcal{H}(GL_2(\mathbb{Q}_p)//GL_2(\mathbb{Z}_p))$ is isomorphic to the complex algebra spanned by the classical Hecke operators $\langle T_{p^r} \rangle$.

- (ii) If $v \mid \infty$ is an archimedean place of k then \mathcal{H}_v is the convolution algebra of bi- K_v -finite distributions on G_v with support in K_v . Then \mathcal{H}_v contains both
 - $\mathcal{U}(\mathfrak{g})$: distributions supported at the identity

and

$$A(K_v)$$
: finite measures on K_v

and in fact

$$\mathcal{H}_v = \mathcal{U}(\mathfrak{g}_v) \otimes_{\mathcal{U}(\mathfrak{k}_v)} A(K_v).$$

For each finite dimensional representation δ_v of K_v we have a fundamental idempotent

$$\xi_{\delta_v} = \frac{1}{\deg(\delta_v)} \Theta_{\delta_v}$$

where $deg(\delta_v)$ is the degree and Θ_{δ_v} is the character of δ_v . In any representation δ_v should act as the projection onto the δ_v -isotypic component.

(iii) The global Hecke algebra \mathcal{H} is then the restricted tensor product of the local algebras \mathcal{H}_v with respect to the idempotents $\{\xi_v^{\circ}\}$ at the non-archimedean places., i.e.,

$$\mathcal{H} = \bigotimes_{v}' \mathcal{H}_{v} = \varinjlim_{S} \left(\left(\bigotimes_{v \in S} \mathcal{H}_{v} \right) \otimes \left(\bigotimes_{v \notin S} \xi_{v}^{\circ} \right) \right)$$

as S runs over finite sets of places of k which contain all archimedean places \mathcal{V}_{∞} . Let us write $\mathcal{H} = \mathcal{H}_{\infty} \otimes \mathcal{H}_f$ where, as usual,

$$\mathcal{H}_{\infty} = \bigotimes_{v \mid \infty} \mathcal{H}_v \quad \text{and} \quad \mathcal{H}_f = \bigotimes'_{v < \infty} \mathcal{H}_v.$$

Then the fundamental idempotents in \mathcal{H} are of the form $\xi = \xi_{\infty} \otimes \xi_f$ where

$$\xi_{\infty} = \xi_{\delta} = \otimes_{v|\infty} \xi_{\delta_v} \in \mathcal{H}_{\infty}$$

is associated to a finite dimensional representation $\delta = \otimes \delta_v$ of K_{∞} and

$$\xi_f = \xi_L = \otimes_{v < \infty} \xi_{L_v} \in \mathcal{H}_f$$

is associated to a compact open subgroup $L = \prod L_v$ of G_f (so for almost all places $L_v = K_v$ and $\xi_{L_v} = \xi_v^{\circ}$).

3.1.2. The representation on automorphic forms. The space \mathcal{A} of K-finite automorphic forms is naturally an \mathcal{H} -module by right convolution. For $\xi \in \mathcal{H}$ and $\varphi \in \mathcal{A}$ set

$$R(\xi)\varphi(g) = \varphi * \check{\xi}(g) = \int_{G(\mathbb{A})} \varphi(gh)\xi(h) \ dh$$

where $\check{\xi}(g) = \xi(g^{-1})$. Note that with this action the K-finiteness condition on $\varphi \in \mathcal{A}$ can now be stated as: there exists a fundamental idempotent $\xi = \xi_{\infty} \otimes \xi_f = \xi_{\delta} \otimes \xi_L$ such that $R(\xi)\varphi = \varphi$.

The representations that we will be most interested in will be ad-missible representations of \mathcal{H} .

Definition 3.1. A representation (π_v, V_v) of a local Hecke algebra \mathcal{H}_v is admissible if for every fundamental idempotent ξ_v we have

$$\dim_{\mathbb{C}}(\pi_v(\xi_v)V_v) < \infty.$$

Similarly a representation (π, V) of the global Hecke algebra \mathcal{H} is admissible if for every global fundamental idempotent $\xi \in \mathcal{H}$ the subspace $\pi(\xi)V$ is finite dimensional.

One consequence of admissibility, which we state in the global case, is that as a representation of K the space V decomposes into a direct sum of irreducibles with finite multiplicities:

$$V = \bigoplus_{\tau \in \hat{K}} m(\tau, V) V_{\tau}.$$

The reason for our interest in admissible representations is the following fundamental result of Harish-Chandra (probably first due to Jacquet and Langlands for GL_2).

Theorem 3.1. Suppose $\varphi \in \mathcal{A}$. Then the \mathcal{H} -module generated by φ , namely

$$V_{\varphi} = R(\mathcal{H})\varphi = \varphi * \mathcal{H} \subset \mathcal{A},$$

is an admissible \mathcal{H} -module.

This makes the following definition reasonable.

Definition 3.2. An automorphic representation (π, V) of \mathcal{H} is an irreducible (hence admissible) sub-quotient of $\mathcal{A}(G(k)\backslash G(\mathbb{A}))$.

There is a canonical way to construct admissible representations of \mathcal{H} abstractly using the restricted tensor product structure $\mathcal{H} = \otimes' \mathcal{H}_v$. Suppose we have a collection $\{(\pi_v, V_v)\}$ of admissible representations of the local Hecke algebras \mathcal{H}_v such that for almost all finite places the representation V_v contains a (fixed) K_v -invariant vector, say u_v° . Then

we can define the restricted tensor product of these representations with respect to the $\{u_v^{\circ}\}$ in the (by now) usual manner:

$$V = \bigotimes_{v}' V_{v} = \varinjlim_{S} \left(\left(\bigotimes_{v \in S} V_{v} \right) \otimes \left(\bigotimes_{v \notin S} u_{v}^{\circ} \right) \right).$$

Note that since u_v° is K_v -fixed, then $\pi_v(\xi_v^{\circ})u_v^{\circ} = u_v^{\circ}$ so this space does carry a natural representation of \mathcal{H} , coming from its restricted tensor product decomposition, which we will denote by $\pi = \otimes' \pi_v$. We leave it as an exercise to verify that if each of the (π_v, V_v) is admissible then so is (π, V) and if each (π_v, V_v) is irreducible, then so is (π, V) .

An important fact for us, which is a purely algebraic fact about \mathcal{H} -modules, is the converse to this construction.

Theorem 3.2 (Decomposition Theorem). If (π, V) is an irreducible admissible representation of \mathcal{H} then for each place v of k there exists an irreducible admissible representation (π_v, V_v) of \mathcal{H}_v , having a K_v -fixed vector for almost all v, such that $\pi = \otimes' \pi_v$.

Therefore in the context of automorphic representations of \mathcal{H} we have the following corollary.

Corollary 3.2.1. If (π, V) is an automorphic representation, then π decomposes into a restricted tensor product of local irreducible admissible representations: $\pi = \otimes' \pi_v$.

Note that the decomposition given in this corollary is an abstract decomposition. It does not give a factorization of automorphic forms into a product of functions on the local groups $G(k_v)$.

3.2. Smooth automorphic representations. Now things are more straight forward on the one hand, since $G(\mathbb{A})$ acts in $\mathcal{A}^{\infty}(G(k)\backslash G(\mathbb{A}))$ by right translation. However the representation theory is now a bit more complicated. More precisely, for every compact open subgroup $L \subset K_f$ the space of L-invariant functions $(\mathcal{A}^{\infty})^L$ in \mathcal{A}^{∞} , namely

$$(\mathcal{A}^{\infty})^L = \{ \varphi \in \mathcal{A}^{\infty} \mid \varphi(g\ell) = \varphi(g) \text{ for } \ell \in L \},$$

is a representation for G_{∞} . The spaces $(\mathcal{A}^{\infty})^L$ all carry compatible limits of smooth Fréchet topologies coming from the uniform moderate growth semi-norms on \mathcal{A}^{∞} and the representation of G_{∞} on these spaces are limits of smooth Fréchet representation of moderate growth. Then as a topological representation

$$\mathcal{A}^{\infty} = \bigcup_{L} (\mathcal{A}^{\infty})^{L} = \varinjlim_{L} (\mathcal{A}^{\infty})^{L}$$

also carries a limit-Fréchet topology. Without going into details on such representations, let us state the results we will need analogous to those for representations of \mathcal{H} .

Theorem 3.3 (Wallach). If $\varphi \in \mathcal{A}^{\infty}$ is a smooth automorphic form then the (closed) sub-representation generated by φ , namely

$$V_{\varphi} = \overline{R(G(\mathbb{A}))\varphi} \subset \mathcal{A}^{\infty},$$

is admissible in the sense that its (dense) subspace of K-finite vectors $(V_{\varphi})_K$ is admissible as an \mathcal{H} -module.

Then we can make the following definition.

Definition 3.3. A smooth automorphic representation (π, V) of $G(\mathbb{A})$ is a (closed) irreducible sub-quotient of $\mathcal{A}^{\infty}(G(k)\backslash G(\mathbb{A}))$.

Note that the smooth automorphic representations are automatically admissible in the above sense. We still have a version of the Decomposition Theorem, which we state as follows.

Theorem 3.4 (Decomposition Theorem). If (π, V) is a smooth automorphic representation of $G(\mathbb{A})$ then there exist irreducible admissible smooth representations (π_v, V_v) of $G(k_v)$, which are smooth Fréchet representations of moderate growth if $v \mid \infty$, such that $\pi = \pi_\infty \otimes \pi_f$ where

$$\pi_{\infty} = \widehat{\otimes}_{v|\infty} \pi_v$$

is the topological tensor product of smooth Fréchet representations and

$$\pi_f = \otimes'_{v < \infty} \pi_v$$

is the restricted tensor product of smooth representations of the $G(k_v)$. Moreover, if (π_K, V_K) is the associated irreducible \mathcal{H} -module of K-finite vectors in V then in the decomposition $\pi_K = \otimes'(\pi_K)_v$ we have $\pi_v = \underbrace{(\pi_K)_v}$ for $v < \infty$ while for $v \mid \infty$ we have $(\pi_v)_K = (\pi_K)_v$ and $\pi_v = \underbrace{(\pi_K)_v}$ is the Casselman-Wallach canonical completion of the \mathcal{H}_v -module $(\pi_K)_v$.

Even though the theory of smooth automorphic representations is topological, according to Wallach it is also quite algebraic. These representations will be algebraically irreducible as representations of the global Schwartz $algebra \mathcal{S} = \mathcal{S}(G(\mathbb{A}))$. This is a restricted tensor product of the local Schwartz algebras $\mathcal{S}_v = \mathcal{S}(G(k_v))$. For archimedean places $v|\infty$ then \mathcal{S}_v is the usual space of smooth (infinitely differentiable) rapidly decreasing functions on $G(k_v)$. At the non-archimedean

places rapidly decreasing is interpreted as having compact support, so S_v is the space of smooth (locally constant) compactly supported supported functions on $G(k_v)$, that is, $S_v = \mathcal{H}_v$. Then $S = S_\infty \otimes S_f$ where now

$$S_{\infty} = S(G_{\infty}) = \widehat{\otimes}_{v|\infty} S_v \quad \text{and} \quad S_f = \bigotimes'_{v<\infty} S_v = \mathcal{H}_f.$$

3.3. L^2 -automorphic representations. If we now fix a unitary central character $\omega: k^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$ and consider the associated space of L^2 -automorphic forms $L^2(G(k)\backslash G(\mathbb{A});\omega)$ then this space is a Hilbert space and affords a unitary representation representation of $G(\mathbb{A})$ acting by right translation. In some sense this is the easiest situation to be in.

Theorem 3.5 (Harish-Chandra). If $\varphi \in L^2(\omega)$ then

$$V_{\varphi} = \overline{R(G(\mathbb{A}))\varphi} \subset L^{2}(\omega)$$

is an admissible sub-representation in the sense that the (dense) sub-space $(V_{\varphi})_K$ of K-finite vectors is admissible as as \mathcal{H} -module.

Definition 3.4. An L^2 -automorphic representation (π, V) is an irreducible constituent in the L^2 -decomposition of some $L^2(\omega)$.

In the context of L^2 -automorphic representations, the Decomposition Theorem predates the algebraic one and is due to Gelfand and Piatetski-Shapiro.

Theorem 3.6. If (π, V) is an L^2 -automorphic representation then there exist irreducible unitary representations (π_v, V_v) of $G(k_v)$ such that $\pi = \widehat{\otimes}' \pi_v$ is a restricted Hilbert tensor product of local representations.

3.4. Cuspidal representations. Since the cuspidality condition is defined by the vanishing of a left unipotent integration

$$\int_{U(k)\setminus U(\mathbb{A})} \varphi(ug) \ du = 0,$$

which is a closed condition, and our actions of \mathcal{H} or $G(\mathbb{A})$ on the spaces of automorphic forms are by right convolution or right translations we see that the spaces of cusp forms \mathcal{A}_0 , \mathcal{A}_0^{∞} , or $L_0^2(\omega)$ are all (closed) sub-representations of the relevant spaces of automorphic forms.

A fundamental result of the space of L^2 -cusp forms is the following result of Gelfand and Piatetski-Shapiro.

Theorem 3.7. The space $L_0^2(\omega)$ of L^2 -cusp forms decomposes into a discrete Hilbert direct sum with finite multiplicities of irreducible unitary sub-representations:

$$L_0^2(\omega) = \bigoplus m(\pi)V_{\pi}$$
 with $m(\pi) < \infty$.

We can then make the following definition.

Definition 3.5. The irreducible constituents (π, V_{π}) of the various $L_0^2(\omega)$ are the L^2 -cuspidal representations.

Recall that for a fixed unitary central character ω we have, as a consequence of the rapid decrease of cusp forms, the inclusions

$$\mathcal{A}_0(\omega) \subset \mathcal{A}_0^{\infty}(\omega) \subset L_0^2(\omega)$$

and in fact upon passing to smooth vectors and then K-finite vectors we have

$$\mathcal{A}_0^{\infty}(\omega) = L_0^2(\omega)^{\infty}$$
 and $\mathcal{A}_0(\omega) = \mathcal{A}_0^{\infty}(\omega)_K = L_0^2(\omega)_K$

so we can deduce the decompositions

$$\mathcal{A}_0^{\infty}(\omega) = \oplus m(\pi)V_{\pi}^{\infty}$$
 and $\mathcal{A}_0(\omega) = \oplus m(\pi)(V_{\pi})_K$.

Definition 3.6. The irreducible constituents of $\mathcal{A}_0(\omega)$ are the unitary (K-finite) cuspidal representations of $G(\mathbb{A})$ and the irreducible constituents of $\mathcal{A}^{\infty}(\omega)$ are the unitary smooth cuspidal representations of $G(\mathbb{A})$.

Note that if (π, V_{π}) is a cuspidal representation (in any context) then the elements of V_{π} are indeed cusp forms, that is, $V_{\pi} \subset \mathcal{A}_0$ as a subspace not a more general sub-quotient.

In general any irreducible subrepresentation of \mathcal{A}_0 or \mathcal{A}_0^{∞} will be called a cuspidal representation. Due to the rapid decrease of cusp forms, any cuspidal representation (π, V_{π}) will be an unramified twist of a unitary cuspidal representation, that is, if we define for any character $\chi: k^{\times} \setminus \mathbb{A}^{\times} \to \mathbb{C}^{\times}$ the twisted representation $\pi \otimes \chi$ as the representation by right translation on the space $V \otimes \chi = \{\varphi(g)\chi(\det g) \mid \varphi \in V_{\pi}\}$, then one can always find an unramified character χ such that $\pi \otimes \chi$ is a unitary cuspidal representation as above. Some choose to call the non-unitary cuspidal representations quasi-cuspidal.

- 3.5. Connections with classical forms. Suppose we return to a classical cusp form f for $SL_2(\mathbb{Z})$ of weight m. If we follow our passage $f \mapsto \varphi \mapsto (\pi_{\varphi}, V_{\varphi})$ then $(\pi_{\varphi}, V_{\varphi})$ is an admissible subspace of the space of cuspidal automorphic forms. It need not be irreducible. However, if in addition f is a simultaneous eigen-function for all the classical Hecke operators, then $(\pi_{\varphi}, V_{\varphi})$ is irreducible and hence a cuspidal representation. Then the Decomposition Theorem lets us decompose π_{φ} as $\pi_{\varphi} = \pi_{\infty} \otimes (\otimes' \pi_{p})$. In this decomposition
 - (i) π_{∞} is completely determined by the weight m of f
 - (ii) π_p is completely determined by the Hecke eigen-value $\lambda(p)$ of T_p acting on f.

In fact, as we shall see, the Decomposition Theorem for π_{φ} is equivalent to the Euler product factorization for the completed L-function $\Lambda(s, f)$.

References

- [1] A. Borel and H. Jacquet, Automorphic forms and automorphic representations. Proc. Symp. Pure Math. 33, part 1, (1979), 189–207.
- [2] D. Flath, Decomposition of representations into tensor products. Proc. Symp. Pure Math. 33, part 1, (1979), 179–183.
- [3] I.M. Gelfand, M.I. Graev, and I.I. Piatetski-Shapiro, Representation Theory and Automorphic Functions. Saunders, Philadelphia, 1968.
- [4] Harish-Chandra, Automorphic forms on Semisimple Lie Groups. Lecture Notes in Mathematics, No. 62 Springer-Verlag, Berlin-New York 1968.
- [5] H. Jacquet and R.P. Langlands, Automorphic Forms on GL(2). Springer Lecture Notes in Mathematics, No. 114, Springer-Verlag, Berlin-New York, 1971.
- [6] N.R. Wallach, C^{∞} vectors. Representations of Lie Groups and Quantum Groups, Pitman Res. Notes Math. Ser. **311**, Longman Sci. Tech., Harlow, 1994, 205–270.