3. AUTOMORPHIC REPRESENTATIONS

We have defined our spaces of automorphic forms. Now we turn to
our tools. We will analyze A, A%, or L?(w) as representation spaces for
certain algebras or groups. Throughout we will let G = G'L,,, although
the results remain true for any reductive algebraic G, let k£ be a number
field, and retain all notations from before.

3.1. (K-finite) automorphic representations. As we have noted
the space A of (K-finite) automorphic forms does not give a represen-
tation of G(A). It will be a representation space for the global Hecke
algebra H.

3.1.1. The Hecke algebra. The global Hecke algebra H will be a re-
stricted tensor product of local Hecke algebras: H = ®'H,. H and
each H, will be idempotented algebras under convolution. So there
will be a directed family of fundamental idempotents {&;} such that

H=limgsH &= J&H*§

and

H, = li_n}éhi,v * Hy x gi,v = Ugi,v * H * gi,’u-

Neither H nor any H, will have an identity, but for each &; the subal-
gebra & x H = & will have &; as an identity.

(i) If v < oo is an archimedean place of k then H, = C*(G(k,)) is
the algebra of smooth (locally compact) compactly supported functions
on G, = G(k,). It is naturally an algebra under convolution. For each
compact open subgroup L, C G, there is a fundamental idempotent

1
§L, = WLU)%‘LU

where X, is the characteristic function of L,. Then &;, x H, x &, =
H(G,//L,) is the algebra of L,-bi-invariant compactly supported func-
tions on G,. In any representation of H, the idempotent &z, will act
as a projection onto the L,-fixed vectors. We will let £ denote the
fundamental idempotent associated to the maximal compact subgroup
K,. Note that if t = Q, G = GL,, and L, = K, = GLy(Z,) then
& * Hy x & = H(GLa(Q,)//G La(Zy)) is isomorphic to the complex
algebra spanned by the classical Hecke operators (T)).
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(ii) If v]oo is an archimedean place of k then H, is the convolution
algebra of bi-K,-finite distributions on G, with support in K,. Then
‘H, contains both

U(g) : distributions supported at the identity

and
A(K,) : finite measures on K,

and in fact
Hy = U(9o) Quie,) A(Ky).
For each finite dimensional representation 4, of K, we have a funda-

mental idempotent
1

= G
% deg(d,)
where deg(d,) is the degree and ©y, is the character of 4,. In any rep-

resentation ¢, should act as the projection onto the d,-isotypic compo-
nent.

(iii) The global Hecke algebra H is then the restricted tensor product
of the local algebras H, with respect to the idempotents {7} at the
non-archimedean places., i.e.,

H =@My = lim (®vesHo) ® (®ugsEy))
S

as S runs over finite sets of places of k which contain all archimedean
places Vu. Let us write H = Ho, ® Hy where, as usual,

Hoo = ®1}|00Hv and Hf = ®;)<00H11'

Then the fundamental idempotents in H are of the form { = &, ® &
where

goo = 66 = ®1}|oo£6v € Hoo
is associated to a finite dimensional representation § = ®4d, of K, and
gf = §L = ®u<oo§L,U E Hf

is associated to a compact open subgroup L = [[L, of Gf (so for
almost all places L, = K, and &, = &;).

3.1.2. The representation on automorphic forms. The space A of K-
finite automorphic forms is naturally an H-module by right convolu-
tion. For £ € H and ¢ € A set

R(&)p(g) = p*&(g) = /G(A) ©(gh)&(h) dh
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where £(g) = £(g7"). Note that with this action the K-finiteness con-
dition on ¢ € A can now be stated as: there exists a fundamental
idempotent £ = &, ® & = & ® £, such that R(§)p = ¢.

The representations that we will be most interested in will be ad-
missible representations of H.

Definition 3.1. A representation (m,, V) of a local Hecke algebra H,
1s admissible if for every fundamental idempotent &, we have

dimg (7, (&,)V,) < 00.

Similarly a representation (w,V') of the global Hecke algebra H is ad-
missible if for every global fundamental idempotent & € H the subspace
w(§)V is finite dimensional.

One consequence of admissibility, which we state in the global case,
is that as a representation of K the space V decomposes into a direct
sum of irreducibles with finite multiplicities:

V= @ m(r, V)V;.

TER

The reason for our interest in admissible representations is the fol-
lowing fundamental result of Harish-Chandra (probably first due to
Jacquet and Langlands for GLs).

Theorem 3.1. Suppose ¢ € A. Then the H-module generated by ¢,
namely

Vo=R(H)p=¢p*xH CA,

18 an admissible H-module.

This makes the following definition reasonable.

Definition 3.2. An automorphic representation (w,V) of H is an ir-
reducible (hence admissible) sub-quotient of A(G(k)\G(A)).

There is a canonical way to construct admissible representations of
‘H abstractly using the restricted tensor product structure H = Q'H,.
Suppose we have a collection {(m,,V,)} of admissible representations
of the local Hecke algebras #, such that for almost all finite places the
representation V,, contains a (fixed) K,-invariant vector, say uo. Then
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we can define the restricted tensor product of these representations
with respect to the {ug} in the (by now) usual manner:

V= ®;,V;, = liﬂ((@vesv;)) ® (®v¢5u;)) :
S

Note that since u? is K,-fixed, then 7,(£3)us = ug so this space does
carry a natural representation of 4, coming from its restricted tensor
product decomposition, which we will denote by 7 = ®'mr,. We leave
it as an exercise to verify that if each of the (m,,V,) is admissible then
so is (m,V) and if each (m,,V}) is irreducible, then so is (7, V).

An important fact for us, which is a purely algebraic fact about
‘H-modules, is the converse to this construction.

Theorem 3.2 (Decomposition Theorem). If (7,V) is an irreducible
admissible representation of H then for each place v of k there exists
an irreducible admissible representation (m,,V,) of H,, having a K,-
fized vector for almost all v, such that ™ = Q'r,.

Therefore in the context of automorphic representations of H we
have the following corollary.

Corollary 3.2.1. If (7,V) is an automorphic representation, then m
decomposes into a restricted tensor product of local trreducible admis-
sible representations: ™ = ®'m,.

Note that the decomposition given in this corollary is an abstract
decomposition. It does not give a factorization of automorphic forms
into a product of functions on the local groups G(k,)-

3.2. Smooth automorphic representations. Now things are more
straight forward on the one hand, since G(A) acts in A®(G(k)\G(A))
by right translation. However the representation theory is now a bit
more complicated. More precisely, for every compact open subgroup
L C K the space of L-invariant functions (A*)" in A, namely

(AX)F = {p € A% | p(gf) = p(g) for (€ L},
is a representation for G. The spaces (A®)" all carry compatible
limits of smooth Fréchet topologies coming from the uniform moder-
ate growth semi-norms on A% and the representation of G, on these
spaces are limits of smooth Fréchet representation of moderate growth.
Then as a topological representation
A® = U(Aoo)L — ll_n>l(./4°°)L
L

L
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also carries a limit-Fréchet topology. Without going into details on
such representations, let us state the results we will need analogous to
those for representations of H.

Theorem 3.3 (Wallach). If ¢ € A® is a smooth automorphic form
then the (closed) sub-representation generated by @, namely

Vo = R(G(A)p C A%,

is admissible in the sense that its (dense) subspace of K-finite vectors
(Vo) k is admissible as an H-module.

Then we can make the following definition.

Definition 3.3. A smooth automorphic representation (m,V) of G(A)
is a (closed) irreducible sub-quotient of A®(G(k)\G(A)).

Note that the smooth automorphic representations are automatically
admissible in the above sense. We still have a version of the Decompo-
sition Theorem, which we state as follows.

Theorem 3.4 (Decomposition Theorem). If (m,V) is a smooth auto-
morphic representation of G(A) then there erist irreducible admissible
smooth representations (my,, V) of G(k,), which are smooth Fréchet rep-
resentations of moderate growth if v|oo, such that m = wy ® mp where

Too = ®v\oo7rv
1s the topological tensor product of smooth Fréchet representations and
7rf = ®;J<oo7r11
is the restricted tensor product of smooth representations of the G(k,).
Moreover, if (7, Vi) is the associated irreducible H-module of K -finite

vectors in V then in the decomposition 7 = ®'(7x), we have T, =
(7K)y for v < oo while for vjoo we have (my)k = (7k)y and m, =

(7K )y s the Casselman-Wallach canonical completion of the H,-module
(WK)U.

Even though the theory of smooth automorphic representations is
topological, according to Wallach it is also quite algebraic. These rep-
resentations will be algebraically irreducible as representations of the
global Schwartz algebra S = S(G(A)). This is a restricted tensor prod-
uct of the local Schwatrz algebras S, = S(G(k,)). For archimedean
places v|oo then S, is the usual space of smooth (infinitely differen-
tiable) rapidly decreasing functions on G(k,). At the non-archmiedean
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places rapidly decreasing is interpreted as having compact support, so
S, is the space of smooth (locally constant) compactly supported sup-
ported functions on G(k,), that is, S, = H,. Then § = So, ® Sy where
now

Soo = S(Goo) = BuiocSy  and Sy = ®), .S, = Hy.

<00

3.3. L?-automorphic representations. If we now fix a unitary cen-
tral character w : k*\A* — C* and consider the associated space of
L?-automorphic forms L?(G(k)\G(A);w) then this space is a Hilbert
space and affords a unitary representation representation of G(A) act-
ing by right translation. In some sense this is the easiest situation to
be in.

Theorem 3.5 (Harish-Chandra). If ¢ € L?(w) then
Ve = R(G(A))p C L*(w)

is an admissible sub-representation in the sense that the (dense) sub-
space (V,)k of K-finite vectors is admissible as as H-module.

Definition 3.4. An L?-automorphic representation (mw,V) is an irre-
ducible constituent in the L?-decomposition of some L?(w).

In the context of L?-automorphic representations, the Decomposi-
tion Theorem predates the algebraic one and is due to Gelfand and
Piatetski-Shapiro.

Theorem 3.6. If (m,V) is an L?-automorphic representation then
there exist irreducible unitary representations (mwy, V) of G(ky) such
that m = @Im, 1s a restricted Hilbert tensor product of local representa-
tions.

3.4. Cuspidal representations. Since the cuspidality condition is
defined by the vanishing of a left unipotent integration

/ ¢(ug) du =0,
U(k)\U(4)

which is a closed condition, and our actions of H or G(A) on the spaces
of automorphic forms are by right convolution or right translations we
see that the spaces of cusp forms Ay, AL, or LZ(w) are all (closed)
sub-representations of the relevant spaces of automorphic forms.

A fundamental result of the space of L?-cusp forms is the following
result of Gelfand and Piatetski-Shapiro.
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Theorem 3.7. The space L3(w) of L?-cusp forms decomposes into a
discrete Hilbert direct sum with finite multiplicities of irreducible uni-
tary sub-representations:

Li(w) = &m(m)Vy with m(7) < oco.

We can then make the following definition.

Definition 3.5. The irreducible constituents (w, V) of the various
Li(w) are the L*-cuspidal representations.

Recall that for a fixed unitary central character w we have, as a
consequence of the rapid decrease of cusp forms, the inclusions

Ao(w) C A (w) € Li(w)

and in fact upon passing to smooth vectors and then K-finite vectors
we have

AP (w) = Lg(w)*  and  Ag(w) = AP (W) = L(w)k
so we can deduce the decompositions
AX(w) = dm(m)V,° and Ay(w) = &m(m)(Va)k-

Definition 3.6. The irreducible constituents of Ay(w) are the unitary
(K -finite) cuspidal representations of G(A) and the irreducible con-
stituents of A®(w) are the unitary smooth cuspidal representations of

G(A).

Note that if (7, V;) is a cuspidal representation (in any context) then
the elements of V, are indeed cusp forms, that is, V; C Aq as a subspace
not a more general sub-quotient.

In general any irreducible subrepresentation of Ay or Ag° will be
called a cuspidal representation. Due to the rapid decrease of cusp
forms, any cuspidal representation (7, V;;) will be an unramified twist of
a unitary cuspidal representation, that is, if we define for any character
X : E*\A* — C* the twisted representation 7®y as the representation
by right translation on the space V ® x = {¢(g)x(detg) | ¢ € V;},
then one can always find an unramified character y such that 7 ® x
is a unitary cuspidal representation as above. Some choose to call the
non-unitary cuspidal representations quasi-cuspidal.
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3.5. Connections with classical forms. Suppose we return to a
classical cusp form f for SLy(Z) of weight m. If we follow our passage
f = o~ (m,,V,) then (m,,V,) is an admissible subspace of the space
of cuspidal automorphic forms. It need not be irreducible. However,
if in addition f is a simultaneous eigen-function for all the classical
Hecke operators, then (7, V,,) is irreducible and hence a cuspidal rep-
resentation. Then the Decomposition Theorem lets us decompose 7,
as Ty, = Teo @ (®'mp). In this decomposition

(i) meo is completely determined by the weight m of f
(ii) 7, is completely determined by the Hecke eigen-value A(p) of
T, acting on f.

In fact, as we shall see, the Decomposition Theorem for 7, is equivalent
to the Euler product factorization for the completed L-function A(s, f).

REFERENCES

[1] A.Borel and H. Jacquet, Automorphic forms and automorphic representations.
Proc. Symp. Pure Math. 33, part 1, (1979), 189-207.

[2] D. Flath, Decomposition of representations into tensor products. Proc. Symp.
Pure Math. 33, part 1, (1979), 179-183.

[3] I.M. Gelfand, M.I. Graev, and LI. Piatetski-Shapiro, Representation Theory
and Automorphic Functions. Saunders, Philadelphia, 1968.

[4] Harish-Chandra, Automorphic forms on Semisimple Lie Groups. Lecture Notes
in Mathematics, No. 62 Springer-Verlag, Berlin-New York 1968.

[5] H. Jacquet and R.P. Langlands, Automorphic Forms on GL(2). Springer Lec-
ture Notes in Mathematics, No. 114, Springer-Verlag, Berlin-New York, 1971.

[6] N.R. Wallach, C* wectors. Representations of Lie Groups and Quantum
Groups, Pitman Res. Notes Math. Ser. 311, Longman Sci. Tech., Harlow,
1994, 205-270.



