11.5. Global functoriality. Now let us take k a global field of characteristic 0, that is, a number field and let G be a connected reductive group defined and split over k. As before, we let $r: {}^LG \to GL_n(\mathbb{C}) = {}^LGL_n$ be an L-homomorphism. Then there is also a global Principle of Functoriality, namely:

Principle of Functoriality: Associated to the L-homomorphism $r: {}^LG \to {}^LGL_n$ there should be associated a natural lift or transfer of automorphic representations of $G(\mathbb{A})$ to automorphic representations of $GL_n(\mathbb{A})$.

We can give a precise formulation of this through local Langlands functoriality and a local-global principle. Let $\pi = \otimes' \pi_v$ be an irreducible automorphic representation of $G(\mathbb{A})$. Then there is a finite set S of finite places such that for all $v \notin S$ we have that either v is archimedean or π_v is unramified. In either case, we understand the local Langlands conjecture for π_v and hence we have a local functorial lift Π_v as a representation of $GL_n(k_v)$.

Definition 11.1. Let $\pi = \otimes' \pi_v$ be an automorphic representation of $G(\mathbb{A})$. An automorphic representation $\Pi = \otimes' \Pi_v$ of $GL_n(\mathbb{A})$ will be called a functorial lift or transfer of π if there is a finite set of places S such that Π_v is the local Langlands lift of π_v for all $v \notin S$.

Then Langlands' Principle of Functoriality predicts that every automorphic representation π of $G(\mathbb{A})$ does indeed have a functorial lift to $GL_n(\mathbb{A})$. Note that Π being a functorial lift of π entails an equality of partial L-functions $L^S(s,\pi,r)=L^S(s,\Pi)$ as well as for ε -factors and twisted versions. (A one point we called this a weak lift. But the terminology of functorial lift (without any prejudicial adjective) is consistent with the recent formulations of functoriality due to Arthur and Langlands himself.)

- 11.6. Functoriality and the Converse Theorem. It should be clear how to approach the problem of global functoriality via the Converse Theorem. We begin with a cuspidal automorphic representation $\pi = \otimes' \pi_v$ of $G(\mathbb{A})$. There are three basic steps:
- 1. Construction of a candidate lift. If we know the local Langlands conjecture for all π_v then we simply take for Π_v the local Langlands

lift of π_v . Note that these local lifts will satisfy

$$L(s, \pi_v \times \pi'_v, r \otimes \iota) = L(s, \Pi_v \times \pi'_v)$$
$$\varepsilon(s, \pi_v \times \pi'_v, r \otimes \iota, \psi_v) = \varepsilon(s, \Pi_v \times \pi'_v, \psi_v)$$

for all irreducible admissible generic representations π'_v of $GL_r(k_v)$. Then we take $\Pi = \otimes' \Pi_v$ to be our candidate lift. We then have

$$L(s, \pi \times \pi', r \otimes \iota) = L(s, \Pi \times \pi')$$
$$\varepsilon(s, \pi \times \pi', r \otimes \iota) = \varepsilon(s, \Pi \times \pi')$$

for all cuspidal π' of $GL_r(\mathbb{A})$.

In practice, there will be a finite set of places S where do not know the local Langlands conjecture for π_v and we will have to deal with this.

2. Analytic properties of L-functions. By the equality of L- and ε -factors above, to show that $L(s, \Pi \times \pi')$ is nice for π' in a suitable twisting set \mathcal{T} it suffices to know this for $L(s, \pi \times \pi', r \otimes \iota)$. But this is what Kim has been lecturing on all semester.

In practice we do not expect $L(s, \pi \times \pi')$ to be entire always, since we do expect some cuspidal representations π of $G(\mathbb{A})$ to lift to non-cuspidal representations Π of $GL_n(\mathbb{A})$. This will also have to be dealt with.

3. Apply the Converse Theorem. Once we know that $L(s, \Pi \times \pi')$ is nice for a suitable twisting set \mathcal{T} , then we can apply the appropriate Converse Theorem to conclude that a functorial lift exists.

We have left two problems unresolved: (i) the lack of the local Langlands conjecture at the $v \in S$, and (ii) the fact that some $L(s, \pi \times \pi')$ could have poles. We are able to finesse both of these using an appropriately chosen idele class character η and the Useful Variant of our Converse Theorems. We will explain these in the next lecture when we deal with the functoriality for the classical groups.

REFERENCES

- [1] J. Arthur, The principle of functoriality. Bull. AMS 40 (2002), 39–53.
- [2] A. Borel, Automorphic L-functions. Proc. Sympos. Pure Math. 33, part 2, (1979), 27-61.
- [3] J.W. Cogdell, Langlands conjectures for GL_n . An Introduction to the Langlands Program (J. Bernstein and S. Gelbart, eds.). Birkhäuser, Boston, 2003, 229–249.

- [4] J.W. Cogdell, Dual groups and Langlands Functoriality. An Introduction to the Langlands Program (J. Bernstein and S. Gelbart, eds.). Birkhäuser, Boston, 2003, 251–268.
- [5] J.W. Cogdell and I.I. Piatetski-Shapiro, Converse Theorems, Functoriality, and applications to number theory. Proc. ICM 2002, Beijing II (2002), 119– 128
- [6] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Math. Studies No. 151, Princeton University Press, Princeton, 2001.
- [7] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139 (2000), 439–455.
- [8] R.P. Langlands, On the classification of irreducible representations of real algebraic groups. Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys Monographs, 31, Amer. Math. Soc., Providence, RI, 1989, 101–170
- [9] R.P. Langlands, Where stands functoriality today. Proc. Symp. Pure Math. 61 (1997), 457–471.
- [10] J. Tate, Number theoretic background. Proc. Symp. Pure Math. 33, part 2, 3–26.

12. Functoriality for the classical groups

We again take k to be a number field. In this Lecture, this is currently a necessary restriction. We let \mathbb{A} denote its ring of adeles and fix a non-trivial character ψ of $k \setminus \mathbb{A}$.

- 12.1. **The result.** We take $G = G_n$ to be a split classical group of rank n defined over k. More specifically, we consider the following cases.
- (a) $G_n = SO_{2n+1}$ or SO_{2n} , the special orthogonal group over k with respect to the symmetric bilinear form represented by

$$\Phi_m = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{pmatrix} \text{ with } m = 2n + 1, \ 2n.$$

(b) $G_n = Sp_{2n}$ the symplectic group with respect to the alternating form represented by

$$J_{2n} = \begin{pmatrix} & \Phi_n \\ -\Phi_n & \end{pmatrix}.$$

In each case, there is a standard embedding $r: {}^LG \hookrightarrow GL_N(\mathbb{C}) = {}^LGL_N$ for an appropriate N as given in the following table.

G_n	$r:^L G_n \hookrightarrow^L GL_N$	GL_N
SO_{2n+1}	$Sp_{2n}(\mathbb{C}) \hookrightarrow GL_{2n}(\mathbb{C})$	GL_{2n}
SO_{2n}	$SO_{2n}(\mathbb{C}) \hookrightarrow GL_{2n}(\mathbb{C})$	GL_{2n}
Sp_{2n}	$SO_{2n+1}(\mathbb{C}) \hookrightarrow GL_{2n+1}(\mathbb{C})$	GL_{2n+1}

Let $\pi = \otimes' \pi_v$ be a globally generic cuspidal representation of $G_n(\mathbb{A})$. [Recall that if B = TU is the standard (upper triangular) Borel subgroup of $G(\mathbb{A})$ and we extend our additive character to one of $U(k) \setminus U(\mathbb{A})$ in the standard way then π is globally generic if for $\varphi \in V_{\pi}$ we have

$$\int_{U(k)\setminus U(\mathbb{A})} \varphi(ug)\psi^{-1}(u) \ du \not\equiv 0.$$

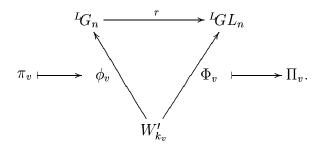
Our result is then the following.

Theorem 12.1. Let π be a globally generic cuspidal representation of $G_n(\mathbb{A})$. Then π has a functorial lift Π to $GL_N(\mathbb{A})$.

Our proof will be by the Converse Theorem. We will follow the three steps given above.

Let S be a non-empty set of finite places such that π_v is unramified for all finite $v \notin S$.

12.2. Construction of a candidate lift. (i) If $v \notin S$, then either $v \mid \infty$ or $v < \infty$ and π_v is unramified. In either case we have the local Langlands parameterization for π_v and hence a local functorial lift Π_v as an irreducible admissible representation of $GL_N(k_v)$.



As suggested by the formalism, one can show the following.

Proposition 12.1. Let Π_v be the local functorial lift of π_v . Let π'_v be an irreducible admissible generic representation of $GL_d(k_v)$ with $1 \le d \le N-1$. Then

$$L(s, \pi_v \times \pi'_v) = L(s, \Pi_v \times \pi'_v)$$
$$\varepsilon(s, \pi_v \times \pi'_v, \psi_v) = \varepsilon(s, \Pi_v \times \pi'_v, \psi_v)$$

For simplicity, since r is the standard embedding of the L-groups, we have dropped it from our notation and written

$$L(s, \pi_v \times \pi'_v) = L(s, \pi_v \times \pi'_v, r \otimes \iota),$$

etc..

(ii) If $v \in S$ then we may not have the local Langlands parameterization of π_v . We replace this knowledge with the following two local results.

Proposition 12.2 (Multiplicativity of γ). If π_v is an irreducible admissible generic representation of $G_n(k_v)$ and π'_v is an irreducible admissible generic representation of $GL_d(k_v)$ of the form

$$\pi'_v \simeq \operatorname{Ind}_{Q(k_v)}^{GL_d(k_v)}(\pi'_{1,v} \otimes \pi'_{2,v})$$

then

$$\gamma(s, \pi_v \times \pi'_v, \psi_v) = \gamma(s, \pi_v \times \pi'_{1,v}, \psi_v) \gamma(s, \pi_v \times \pi'_{2,v}, \psi_v).$$

In this case, one also has a divisibility among the L-functions

$$L(s, \pi_v \times \pi'_v)^{-1} | [L(s, \pi_v \times \pi'_{1,v}) L(s, \pi_v \times \pi'_{2,v})]^{-1}.$$

There is a similar multiplicativity in the first variable, that is, when the representation π_v of $G_n(k_v)$ is induced.

Proposition 12.3 (Stability of γ). Let $\pi_{1,v}$ and $\pi_{2,v}$ be two irreducible admissible smooth generic representations of $G_n(k_v)$. Then for every sufficiently highly ramified character η_v of k_v^* we have

$$\gamma(s, \pi_{1,v} \times \eta_v, \psi_v) = \gamma(s, \pi_{2,v} \times \eta_v, \psi_v).$$

In this situation, one also has that the L-functions stabilize

$$L(s, \pi_{1,v} \times \eta_v) = L(s, \pi_{2,v} \times \eta_v) \equiv 1$$

so that the $\varepsilon(s, \pi_{i,v} \times \eta_v, \psi_v)$ stabilize as well.

Recall from Lecture 6 that we had analogous statements for $GL_n(k_v)$. Moreover, as noted there, by using the multiplicativity in the G_n -variable one can compute the stable form of the γ -factor in terms of abelian γ -factors. Comparing these stable forms for $G_n(k_v)$ with those for $GL_N(k_v)$ one finds:

Proposition 12.4 (Comparison of stable forms). Let π_v be an irreducible admissible generic representation of $G_n(k_v)$. Let Π_v be an irreducible admissible representation of $GL_N(k_v)$ having trivial central character. Then for every sufficiently ramified character η_v of $GL_1(k_v)$ we have

$$\gamma(s, \pi_v \times \eta_v, \psi_v) = \gamma(s, \Pi_v \times \eta_v, \psi_v).$$

Of course since both L-functions stabilize to 1, this gives the equality of the stable L- and ε -factors.

So at the places $v \in S$ we can now take as the local component Π_v of our candidate lift any irreducible admissible representation of $GL_N(k_v)$ with $\omega_{\Pi_v} \equiv 1$. With this choice of Π_v we have the following result.

Proposition 12.5. Let π'_v be an irreducible admissible generic representation of $GL_d(k_v)$ of the form $\pi'_v = \pi'_{0,v} \otimes \eta_v$ with $\pi'_{0,v}$ unramified and η_v chosen as above. Then we have

$$L(s, \pi_v \times \pi'_v) = L(s, \Pi_v \times \pi'_v)$$
$$\varepsilon(s, \pi_v \times \pi'_v, \psi_v) = \varepsilon(s, \Pi_v \times \pi'_v, \psi_v)$$

To see this on the level of γ -factors, write $\pi'_{0,v} = \operatorname{Ind}(||_v^{s_1} \otimes \cdots \otimes ||_v^{s_d})$. Then $\pi'_v = \operatorname{Ind}(||_v^{s_1} \eta_v \otimes \cdots \otimes ||_v^{s_d} \eta_v)$ and we have

$$\gamma(s, \pi_v \times \pi'_v, \psi_v) = \prod_{i=1}^d \gamma(s + s_i, \pi_v \times \eta_v, \psi_v) \qquad \text{(multiplicativity)}$$

$$= \prod_{i=1}^d \gamma(s + s_i, \Pi_v \times \eta_v, \psi_v) \qquad \text{(stability)}$$

$$= \gamma(s, \Pi_v \times \pi'_v, \psi_v) \qquad \text{(multiplicativity)}$$

Return to our generic cuspidal representation $\pi = \otimes' \pi_v$ of $G_n(\mathbb{A})$. For each π_v we have attached a local representation Π_v of $GL_N(k_v)$, which is the local functorial lift for those $v \notin S$. Then $\Pi = \otimes' \Pi_v$ is an irreducible admissible representation of $GL_N(\mathbb{A})$. This is our candidate lift. Combining our local results, we have:

Proposition 12.6. Let π and Π be as above. Then there exists an idele class character $\eta: k^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$ such that for all $\pi' \in \mathcal{T}^S(N-1) \otimes \eta$ we have

$$L(s, \pi \times \pi') = L(s, \Pi \times \pi')$$
$$\varepsilon(s, \pi \times \pi') = \varepsilon(s, \Pi \times \pi')$$

12.3. Analytic properties of L-functions. The analytic properties of the $L(s, \pi \times \pi')$ are controlled through the Fourier coefficients of Eisenstein series as in Kim's lectures. We summarize the results from there that we need in the following result.

Proposition 12.7. Let π be a globally generic cuspidal representation of $G_n(\mathbb{A})$. Let S be a non-empty set of finite places and let $\eta: k^{\times} \setminus \mathbb{A}^{\times} \to \mathbb{C}^{\times}$ be an idele class character such that at one place $v_0 \in S$ we have that both η_{v_0} and $\eta_{v_0}^2$ are ramified. Then $L(s, \pi \times \pi')$ is nice for all $\pi' \in \mathcal{T}^S(N-1) \otimes \eta$, that is,

- (i) $L(s, \pi \times \pi')$ and $L(s, \widetilde{\pi} \times \widetilde{\pi}')$ are entire functions of s;
- (ii) these functions are bounded in vertical strips;

(iii) we have the standard functional equation

$$L(s, \pi \times \pi') = \varepsilon(s, \pi \times \pi') L(1 - s, \widetilde{\pi} \times \widetilde{\pi}').$$

Recall that η is necessary only to ensure that the $L(s, \pi \times \pi')$ are all entire. This resolves our global problem that the lift Π of π need not be cuspidal so that $L(s, \pi \times \pi')$ might have poles if some restriction is not placed on the π' .

It is in the use of the Eisenstein series to control the L-functions that k is required to be a number field. In reality this should not matter, but at present this method of controlling the L-functions is only worked out in characteristic zero, that is, the number field case.

12.4. **Apply the Converse Theorem.** Take $\pi = \otimes' \pi_v$ to be our globally generic cuspidal representation of $G_n(\mathbb{A})$. Let S be a non-empty set of finite places such that π_v is unramified for all finite places $v \notin S$. Construct the candidate lift $\Pi = \otimes' \Pi_v$ as above.

For an appropriate choice if idele class character $\eta: k^{\times} \backslash \mathbb{A}^{\times} \to \mathbb{C}^{\times}$, chosen to satisfy both our local requirements of Proposition 12.6 and our global requirement of Proposition 12.7, we know that for all $\pi' \in \mathcal{T}^S(N-1) \otimes \eta$ both

$$L(s, \pi \times \pi') = L(s, \Pi \times \pi')$$

$$\varepsilon(s, \pi \times \pi') = \varepsilon(s, \Pi \times \pi')$$

and

$$L(s, \pi \times \pi')$$
, and hecne $L(s, \Pi \times \pi')$, is nice.

Now applying the useful variant of our Converse Theorem there exists an automorphic representation Π' of $GL_N(\mathbb{A})$ such that for all $v \notin S$ we have

$$\Pi'_v \simeq \Pi_v = \text{ the local functional lift of } \pi_v.$$

Then Π' is our functorial lift of π .

REFERENCES

- [1] J.W. Cogdell, H. Kim, I.I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GL_N . Publ, Math. IHES **93** (2001), 5–30.
- [2] J.W. Cogdell, H. Kim, I.I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups. In preparation (2003).
- [3] H. Kim, Course on Automorphic Functions. Fields Institute, Spring 2003.