10. CONVERSE THEOREMS

Once again, we take k£ to be a global field, which we have taken to be
a number field — but that is irrelevant. Then A is its ring of adeles and
we take 1 : k\A — C* a non-trivial continuous additive character.

10.1. Converse Theorems for GL,. For automorphic representa-
tions of GL, (A) the “Converse Theorem”, i.e., the converse to the the-
ory of global L-functions developed in the last lecture, has a slightly
different flavor from the classical ones. It addresses the following ques-
tion.

Let us take 7 ~ ®'m, to be an arbitrary (i.e., not necessarily auto-
morphic) irreducible admissible smooth representation of G L, (A).

Question: How can we tell if the local pieces w, of m are “coherent
enough” that we have an embedding

Ve = AP (GL,(K)\GL,(A))?

Our Converse Theorems gives an analytic answer to this question in
terms of L-functions. From our local theory of L-functions, to each
local component 7, we have attached a local L-factor L(s,n,) and a
local e-factor (s, m,,1,). Thus we can (at least formally) form the
Euler products

L(s,m) = HL(s,m,) and (s, m, 1) = He(s,wv,wv).

Then L(s, ) is a formal Euler product of degree n and our question
can be rephrased as:

Question: Is the Dirichlet series defined by this formal Euler product
modular?

This is closer to the classical Converse Theorems.

To begin we must make some mild coherence and modularity as-
sumptions, namely that

(i) the Euler product for L(s, ) is absolutely convergent in some
right half plane Re(s) >> 0;
(ii) the central character w, of 7 is an automorphic form on GL,(A),

that is, an idele class character of £*\A*.
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Note that one can show that (ii) implies that (s, 7, 1) = (s, 7) is
independent of ).

Under these conditions, if 7' ~ 7} is any cuspidal (hence automor-
phic) representation of GL,,(A) with 1 < m < n — 1 then we can
similarly form

L(s,mx7") = HL(S, 7 X ) and e(s,m X 7', 1) = Hs(s, Ty X Ty Py

and still have that

e both the Euler products for L(s, 7 x 7') and L(s,7 x 7') converge
absolutely for Re(s) >> 0; and that

e c(s,m x 7' 1) =¢e(s,m x ©') is independent of ).

We say that L(s,m x ©') is nice if it behaves as it would if = were
cuspidal, i.e.,

(i) L(s,m x 7') and L(s,7 x ') extend to entire functions of s;
(ii) these extensions are bounded in vertical strips;
(iii) they satisfy the functional equation

L(s,m x7')=¢e(s,m x ") L(s,7 x ).

Our Converse Theorems, like Weil’s, will involve these twists. To that
end, for any m with 1 < m <mn — 1 let us set

T(m) = [ [ {#' cuspidal, Vi C AF(GLa(k)\GLa(A))}

d=1

and for any finite set S of finite places we set
T5(m) = {7’ € T(m) | 7, is unramified for all v € S}.

The basic Converse Theorem, the analogue of those of Hecke and Weil,
is the following result.

Theorem 10.1. Let m be as above, an irreducible admissible smooth
representation of GLn(A) having automorphic central character and
such that L(s,m) converges for Re(s) >> 0. Let S be a finite set of
finite places. Suppose that L(s,m x 7') is nice for all 7' € T5(n — 1).
Then

(i) if S = 0 then 7 is automorphic and cuspidal;
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(ii) if S # 0 then 7 is quasi-automorphic in the sense that there
exists an automorphic representation m such that m , ~ m,
forallv ¢ S.

A stronger result, but somewhat harder to prove, is the following.

Theorem 10.2. Let n > 3 and let m be as above, an irreducible ad-
missible smooth representation of GL,(A) having automorphic central
character and such that L(s,m) converges for Re(s) >> 0. Let S be
a finite set of finite places. Suppose that L(s,m x ') is nice for all
7' € T5(n —2). Then

(i) if S =0 then 7 is automorphic and cuspidal;
(ii) if S # O then 7 is quasi-automorphic in the sense that there
exists an automorphic representation m such that m, ~ m,

forallv ¢ S.

I would like to sketch the proof of Theorem 10.1. For simplicity let
us assume that in addition (7, V;) is generic. (We have discussed how
to get around this in practice.)

10.2. Inverting the integral representation. Take 7 ~ ®'rm, as
in the statement of Theorem 10.1. For this section we assume that
L(s,mx ") is nice for all 7" € T(n—1) and see what this leads to when
we invert our integral representation.

We first need to produce some functions on GL,(A). Since we have
assumed (m, V) is generic we can do this via the Whittaker model.
If ¢ € V; is such that under the decomposition V; ~ &'V, we have
& ~ ®E, then to each £, we have associated a Whittaker function
We, € W(my, 1) and hence

We(g) = [ [ We, (90) € Wi, ¢)

is a smooth function on N, (k)\G L, (A).

We could try to embed V; into AJ° by averaging W, over GL,(k), but
this would not converge. However the standard estimates on Whittaker
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functions do let us average over the rational points of the mirabolic

P = Stabgr, ((0,...,0,1)) =<p=| 5
* * %
0 0 1

So we form

Ulg)= >, Welng)= > (k)W5<<7 1)9)-

peEN(k)\P(k) YENp_1(k)\GLn_1

Proposition 10.1. Ug(g) converges absolutely and uniformly for g in
compact subsets, is left invariant under P(k), and its restriction to
GL, 1(k)\GLy, 1(A) is rapidly deceasing (modulo the center).

Note that is € = ¢ was indeed a cusp form, this would be its Fourier
expansion.

We can make a similar construction for any mirabolic subgroup and
to utilize our functional equation we will need to do this. To this end,
let Q be the opposite mirabolic

0 x oo % 0
Q@ = Stabgy, 0 =q4=1; * 0
1 * * 1
and let a = ( I, 1), a permutation matrix. Then set
Ve(g) = Z We(agqg) where N'=a 'Na.

gEN'(K)\Q(k)
This is again absolutely convergent, uniformly on compact subsets,

left invariant under Q(k), and rapidly decreasing (mod center) upon
restriction to GL,,—1(k)\GLy,—1(A).

Since P(k) and Q(k) together generate GL,(k), it suffices to show
that Ue(g) = Ve(g), for then
£ Ug(g) embeds V;— AZ°.

We will obtain this equality from the analytic properties of L(s, 7w x 7').

Let Vv € A®(GLp—1(k)\GL,_1(A)) be any irreducible subspace of
the space of smooth automorphic forms on GL,_;. For example 7’
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could be cuspidal. We call such #’ proper automorphic representations.
They consist of spaces of automorphic forms.

If ¢’ € Vs then we can form

6,V #) = | v (")) et an
GLp—1(k)\GLn-1(4)

and show that this converges for Re(s) >> 0. This will then factor in
the usual manner into

I(s,Ug,¢' H\l} $, We,, W, ).

Suppose first that 7’ is cuspidal. Let T be the finite set of places,
containing the archimedean ones, such that m,, 7,, and v, are all un-
ramified for v ¢ T. Then as before

I(s,Ug, ¢') = (H (s, Wév,Wé,;)) LT (s, x )

veET

- (H e(s,ng,Wé%)> L(s,m x 7).

veT

From our local theory we know that the factors e,(s) are entire and
by assumption L(s,m x 7') is entire. Hence I(s, Uy, ¢') extends to an
entire function of s.

If 7' is not cuspidal, then by Langlands’ Theorem given last lecture
we know that 7’ is a constituent, and in fact a sub-representation, of an
induced representation = = Ind(m; ® --- ® 7,) with each 7; a cuspidal
representation of some GL,, with n; < n — 1. So each L(s,m x 7;) is
nice and we can use these to reach the same conclusion, namely that
I(s,Ug, ¢') is entire for any ¢' € Vv for any proper ='.

Similarly if we form

I(s, Ve, ) = / v (h 1) & (h)| det h*~F dh
GLp—1(k)\GLn-1(4)

then this will converge for Re(s) << 0, unfolds to

I(Sa Vv&: QOI) = (H g(l — S, R(wn,nflrwvﬁv: W&g})) L(1 — S, T X %1),

veT

and continues to an entire function of s.



If we now apply the assumed global functional equation for either
L(s,m x ") or L(s, 7 x 7;) and the local functional equations for v € T
we may conclude that

I(s,Ue, ") = I1(5, Vg, ') forall ¢ €Vy C A®(GL,—1).

Then an application of the Phragmen-Lindel6f principle implies that
these functions are bounded in vertical strips of finite width.

Thus we have

/Ug (h 1) o' (h)| det h|*~% dh = /v6 (h 1) ¢ (h)| det h|*~2 dh

with the integration over GL,,_1(k)\GL,—1(A). Using the boundedness
in vertical strips, we can apply Jacquet-Langlands’ version of Mellin
inversion to obtain

Jue(" ) e an= (") an

now with the integration over SL,_1(k)\SL,—1(A). Then using the
weak form of Langlands spectral theory for SL,_i(k)\SL,_1(A) we
can conclude that the functions ¢’ are “complete” and that

Ug (h 1) = ‘/5 (h 1) for he SLn_l(A), 5 S Vﬁ
and in particular
Ue(I,) = Ve(I,) forall €eV,.

10.3. Proof of Theorem 10.1 (i). To conclude the proof of part (i)
of Theorem 10.1 we just note that since we have

Ue(L,) = Ve(I,) forall €EeV;
then for any g € GL,(A) we have

Ue(9) = Ungye(In) = V(ge(In) = Ve(9)-
So the map { — Ug maps V; — A*. Since U; is given by a Fourier

expansion o) — Z i W, ((7 1) g)

N1 (k)\GLn—1(
we can compute a non-zero Fourier coefficient to conclude that Ug # 0,
and hence the map is injective, and explicitly show that all unipotent
periods are zero, and hence that U is in fact cuspidal. Thus we have
Vi = AF° as desired.
[To Be Continued]



