9. GLOBAL L-FUNCTIONS

We return now to the global setting. So once again £ is a number
field and A its ring of adeles. Let X denote the set of all places of k.
Take v : k\A — C* a non-trivial continuous additive character.

Let (7, Vz) be a unitary smooth cuspidal representation of GL,(A),
which then decomposes as m ~ ®'m,. Similarly, (7',V,) will be a
unitary smooth cuspidal representation of GL,,(A) with 7' ~ ®'x).
We will mainly concentrate on the case of m < n. The case of m =n
can then be worked out as an exercise.

For each place v € ¥ we have defined local L- and e-factors
L(s,m, xm,) and &(s,m, X 7, 1,).
We then define the global L-function and e-factor as Euler products.

Definition 9.1. The global L-function and e-factors for m and 7' are

L(s,m x 7') HLsm,xw

vEX

and

g(s,mx7') = He(s,m X T ).

veEX

Implicit in this definition is the convergence of the products in a
half plane Re(s) >> 0 and the independence of the e-factor from the
choice of 1. We will address this below. Then we will turn to showing
these L-functions are nice. Our scheme will be to relate these Euler
products to our global integrals and deduce the global properties of the
L-functions from those of our global integrals.

Throughout, we will take S C ¥ to be a finite set of places, containing
the archimedean places, such that for all v ¢ S we have that m,, 7/,
and 1), are all unramified. The set S can vary, but it should always
have these properties.

9.1. Convergence. Choose cusp forms ¢ € V, and ¢’ € Vv such that
under the decomposition V; ~ @V, we have ¢ ~ ®¢, and similarly
¢ ~ ®¢. Choose S as above such that for all v ¢ S, &, = & is the

K,-fixed vector in V;, and similarly & = £°. Then we know from
1
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Lecture 5 that
I(s,0,¢) = U(s, Wy, W) = [ ¥ (s, We,, W},)
VEX

and this converges absolutely for Re(s) > 1. By our unramified calcu-
lation of Lecture 7 we know that for v ¢ S we have

(s, Weg, Wir) = L(s, my X ).
Hence
I(s, ¢, (H\Il s ng,W@)) L% (s,m x ")
veS

where L(s,m x 7') is the partial L-function

L (s,m x 7') HL Sy Ty X T
vgS
Thus the Euler product for L® (s, 7 x ') converges for Re(s) >> 0 and
hence

e L(s,m x 7') converges for Re(s) >> 0.
Thus our global L-function is well defined.

We could have also deduced the convergence of the infinite prod-
uct from the Jacquet-Shalika bounds on the Satake parameters for
unramified representations. As was pointed out, this would give con-
vergence for Re(s) > 2. In fact, with a bit more work than I have
done here, Jacquet and Shalika show absolute convergence (and hence

non-vanishing) for Re(s) > 1.

As for the e-factor, again from our unramified calculation of Lecture
7 we know that (s, m, x m,,1,) =1 for v ¢ S. So

e(s,mx ') = Hs(s, Ty X Ty Uy)
veES
is only a finite product. From the shape of the local e-factors from
Lectures 6 and 8, we know that it has the form
1 s
e(s,mx ') =WN?
with N a positive integer.

The independence of e(s, 7 x 7') from the choice of ¢ can be seen
either by investigating how the local e-factors vary as we vary v, which



3

can be done through the local integrals, or as a consequence of the
global functional equation below.

9.2. Meromorphic continuation. We continuation analyzing the re-
lation between L(s,m x 7') and our global integrals from above. We
have

I(Sa(pa (pl) = H\II(S,W@,WEIL)) LS(S,T(' X 7T’)

veS

- (I

vES

= H e(s, We,, Wfl’v)> L(s,m x ')

vES

\II(S’W&H é;)) L(S T X 7'(',)

L(s,m, x m)

From our analysis of the global integrals, we know that I(s, ¢, ¢') is
entire (or I(s, ¢, ¢', ®) is meromorphic if m = n). For each v € S we
have seen that the local ratios e(s, We,, Wy, ) are entire. Since S is a
finite set, we can conclude

e L(s,m x 7') extends to a meromorphic function of s.

9.3. Poles of L-functions. In our analysis of the local L-functions
in Lectures 6 and 8 we have shown not only that the local ratios
e(s, We,, Wy, ) are entire, but in fact that for every sy € C there is
a choice of local Whittaker functions W, and W, such that the ra-
tio e(sg, Wy, W)) # 0. So as we vary W, € W(m,,v¢,) and W, €
W(n! 1 1) we obtain that the poles of the global L-function L(s, 7 x7")

v

are precisely those that occur for the families of global integrals

(s, 0,9} or {I(s,9,¢'®)}.

Hence
e If m < n then L(s, 7 x ') is entire.

e If m = n then L(s, 7 x ') has simple poles precisely at those s = io
and s = 1 + io with o € R such that 7 ~ 7' ® | det |".

In particular,

e L(s,m x ) has simple poles at s =0, 1



o L(s,m x7') has a pole at s =1 iff 7 ~ 7.

9.4. The global functional equation. We know that our global in-
tegrals satisfy a functional equation

I(S’ 2 QOI) = I(l -5, &a QBI)

Furthermore, as above, we have decompositions

I(s,0,¢") = (H e(s, We,, Wé})) L(s,mx7)

vES

and

I1-s5,57)= (H (1 = 5, R(wnm)We,, ﬁ/’é)) L(1—s,7 x 7).

vES

By the local functional equations, for each v € S we have
e(1—s, R(wn,m)W§v, Wég) = wu (=1)"e(s, my X by )e(s, W, , Wi, ).

We now take the product of both sides over those v € S. Note that
since everything is unramified for v ¢ S, we have

[Tom(0m" =m0 =wu(-1) =1
veES vEY
and as we have seen above
Hs(s,wv X Ty ) = Hs(s,m X T, y) = e(s,m x 7).
vES VEX

Thus when we take this product we find
H’ev(l — s, R(wn,m)W§v, Wég) =¢e(s,m x7') H e(s, We,, Wi )

vES vES
so that
I1-5,5,3) = (H e(s, We,, Wé})) e(s,mx m)L(1 — s, 7T x 7).
vES

If we combine this with our functional equation for the global inte-
grals, we find our global functional equation

o L(s,mx7')=¢(s,m x7'")L(1 — s, x7).

Note that this equality implies that (s, 7 x 7') is independent of .
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9.5. Boundedness in vertical strips. This is not as simple as it
should be. Here is the paradigm. We include the case of m = n.

For v ¢ S we have

L(SJWUXW;}):{\II(S’WU’WO 7@1,) m=n

‘11(87 Wq?an’;O) m<’fL.
For non-archimedean v € S there are finite collections {W,,; }, {W, ;},

and {®,;} if necessary such that

Zi \II(SJ Wv,i: W,,ia q)u,i) m=n

L(s,my x 7)) = v .
(5,1 ) {ZZ (s, Wei, Wy ;) m<n

For archimedean places v only if m = n or m = n—1 do we know that
there are finite families of either smooth or even K,-finite Whittaker
functions {W,;} and {W,;}, and if necessary Schwartz functions {®, ;}
such that

L(Sa'/rv X ’/T;) = {ZZ (S’Wv,z,W ) m=n

v,y Ul

Zz’ \IJ(S’ W’U,i, Wé,z) m=n-—1 ‘

Hence if m = n or m = n — 1 the there are finite collections of cusp
forms {¢;} C V; and {¢;} C Vv and if necessary Schwartz functions
{®;} € S(A™) such that

(s, 05 0l ®) m =
L(S,ﬂ- X 7]',) — Zz (87 (10 7%017 ) m n
il(s,i07)  m=n—1
Now boundedness in vertical strips of the L-function L(s, 7 x ") follows
from that of the global integrals.

If m < n— 1 then at the archimedean places we must pass to the
topological product V,, &V, in order to obtain L(s, T, x ), that is,
L(s,m, x ) = U(s,W) for W € W(m,Qn, ,).

To make our paradigm work we should re-develop the analysis of our
global integrals for cusp forms (g, h) € V,®Vy, which is a smooth
cuspidal representation of the product GL,(A) x GL,,(A). Then we
would obtain an equality

L(s,m x ') =1I(s,) with ¢ € V,QVp

and would then have boundedness in vertical strips as before. There
seems to be no obstruction to carrying this out and we hope to soon
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write up the details. This then gives boundedness in vertical strips in
general.

If this makes you nervous, Gelbart and Shahidi have proven bound-
edness in vertical strips for a wide class of L-functions, including ours,
via the Langlands-Shahidi method of analyzing L-functions through
the Fourier coefficients of Eisenstein series.

So, no matter how you cut it,

e L(s,m x 7') is bounded in vertical strips of finite width.

9.6. Summary. If we combine these results, we obtain a statement of
the basic analytic properties of out L-functions.

Theorem 9.1. If 7w is a unitary cuspidal representation of GL,(A)
and ' is a unitary cuspidal representation of GLy(A) with m < n
then L(s,m X 7') is nice, i.e.,

(i) L(s, ™ x ") converges for Re(s) >> 0 and extends to an entire
function of s;
(ii) this extension is bounded in vertical strips of finite width;
(iii) it satisfies the functional equation

L(s,m x ') =¢e(s,m x ')L(1 — 8,7 x 7).

In the case of m = n we have a similar result.

Theorem 9.2. If 7 and ©' are two unitary cuspidal representation of
GL,(A) then

(i) L(s,m x ") converges for Re(s) >> 0 and extends to a mero-
morphic function of s with simple poles at those s = io0 and
s = 1+10 such that T ~ 7' ® | det |*°; if there are no such io
then L(s,m X 7') is entire;
(ii) this extension is bounded in vertical strips of finite width (away
from its poles);
(iii) 4t satisfies the functional equation

L(s,m x ') =¢e(s,m x 7' )L(1 — 8,7 x 7).

9.7. Strong Multiplicity One revisited. We will now present the
analytic proof of the Strong Multiplicity One Theorem due to Jacquet
and Shalika. It is based on the analytic properties of L-functions. First,
recall the statement.
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Theorem 9.3 (Strong Multiplicity One for GL,). Let (7, Vy,) and
(79, Vi) be two cuspidal representations of GLy,(A). Decompose them
as m ~ Q'm, and m ~ ®'m,. Suppose that there is a finite set of

places S such that m , ~ m, for allv ¢ S. Then (w1, Vy,) = (72, Vp,).

Without loss of generality we may assume 7; and 7y are unitary. We
know from Section 3 or Theorem 9.2 that L(s,m; X 72) has a pole at
s=1iff m = mo.

Let us write

L(s,m X M) = (H L(s, 1, X 772,1,)) L% (s,m1 X 7).

vES

The local L-functions for v € S are all of the form

Py(g,*)7 v <00

L v X Toy) =
(8,7T1, 77-2,) {HFU($+*) /U‘OO

So in either case they are never zero. We also know from Lectures 6
and 8 that the local integrals are absolutely convergent for Re(s) > 1.
So the local L-factors can have no poles in this region either. Hence
the finite product

H L(S, T1w X 7~T2,1,)
vES
has no zeros or poles in Re(s) > 1. Thus L(s,m X 7) has a pole at
s =1iff L5(s,m X @) does.
Since my , ~ my, for all v ¢ S we have

LS(S,Wl X 7}/2) = LS(S,’/Tl X %1)

By the same argument as above, L (s, 7 x 71 ) will have a pole at s = 1
since the full L-function L(s,m; X 7;) does, again by Theorem 9.2.

Thus L(s,m X T3) does indeed have a pole at s = 1 and so m; ~ m.
Then Multiplicity One for GL,, gives that in fact (m, Vz,) = (72, Vi, )-

9.8. Generalized Strong Multiplicity One. Jacquet and Shalika
were able to push this technique further to obtain a version of the
Strong Multiplicity One Theorem for non-cuspidal representations. To
state it, we must first recall a theorem of Langlands.



If 7 is any irreducible automorphic representation of GL,(A) then
there exists a partition n = n; + --- + n, of n and cuspidal repre-
sentations 7; of GL,,(A) such that 7 is a constituent of the induced
representation

=E=Indg ;¥ (ne---en).

Langlands worked in the context of K-finite automorphic representa-
tions, but the result is valid for smooth automorphic representations as
well. It is a consequence of the theory of Eisenstein series. Similarly,
if 7' is another automorphic representation of GL,(A) then 7’ will be
a constituent of a similarly induced representation

= =Indg" (@ @)
associated to a second partition n =nj +--- +n/,.

Theorem 9.4 (Generalized Strong Multiplicity One). Let m and 7'
be two automorphic representations of GL,(A) as above. Suppose that
there is a finite set of places S such that m, ~ «! for allv ¢ S. Then
r = 1" and there is a permutation o of {1,...,r} such that n; = ”:7(1')
and T; = To(;).

Thus the knowledge of the local components of 7 at almost all places
completely determines the “cuspidal support” of 7. In particular, the
“cuspidal support” of 7 is well defined. As a consequence of this result
Jacquet and Shalika showed the existence of the category of isobaric
representations for GL,(A).
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