Fast Visualization/Animation of
Approximate Solutions of PDEs

W.H. Enright
Department of Computer Science
University of Toronto
Toronto, Canada M5S 3G4

enright@cs.utoronto.ca

Workshop on the Mathematics of Computer
Animation

Toronto, November 2002

Report of some results of an ongoing research
project.

Collaborators:

Gonzalo Ramos, Emma Bradbury, Mohammad
Kaazempur-Mofrad, Samir Hamdi, Paul Muir

The Basic Problem

e Results from large scale scientific simula-
tions are generally approximate solutions
to large systems of Differential Equations.
Usually PDEs rather than ODEs.

e Only a very small fraction of the data will
ever be viewed by anyone. (Why store
and transmit all the data if nobody will
ever view it?) We will consider storing and
transmitting only enough data so that the
relevant data can be efficiently regenerated
when needed.

e (GGeneric examples arise in climate model-
ing, weather forecasting, and nuclear waste
management.

Inherent Difficulties

e Generating the data — New PDE algorithms
(HP scientific computation).

e Storing the data — Data structures and
hierarchichal storage devices.

e Transmitting the data — Bandwidth,
distributed computing/collaboration.

e Viewing the Data — Contour plots (2D)
and level surfaces (3D). The use of colour,
sound and animation.

e Mining the data — searching for patterns,
identifying new patterns. Interactive
‘steering’ of renderer.

Issues to be Considered

e Accuracy/Resolution.

e Cost — Bandwidth, storage requirement and
computer time.

Related Issues

e Image compression.

e Interpolation of scattered unstructured data.

The basic idea of this approach is to use a
‘just-in-time’ strategy for refining the approx-
imate solution. (For example when rendering
or data mining.)

e Store/transmit accurate coarse data only.

e Generate fine mesh data only when inves-
tigating a particular portion of the data.
(Request generated and responded to in
real time.)

e Use local information only during refine-
ment (ideal for implementation on multi-
Processors).

The problem and the approximate solution will
be accessed/investigated in very different
contexts:

1. Generation of the approximate solution:
Usually in a HP computing environment
using FORTRAN or C. (NEOS, ELLPACK)

2. Visualizing of the approximate solution:
Often using special packages such as VDK
or Tecplot.

3. Data Mining or mathematical investigation:
Often in a PSE such as Maple, Matlab or
Mathematica.

Thereis a need for a generic, language-independent
data structure to represent a coarse mesh (but
accurate) approximate solution which can sub-
sequently be refined (at low cost) when nec-
essary. (A piecewise polynomial.)

Visualization: A Typical Application

To illustrate how this approach can be effec-
tive we will consider the difficulty of realisti-
cally displaying an accurate approximate solu-
tion generated on a ‘coarse’ mesh.

e A one dimensional example — an ODE.
e EXxtend this approach to 2D and 3D — PDEs.

e A generic 3D example is the generation of
temperature contours or isobar charts in
weather maps. Animation can be used to
show evolution over time.

e \We will present a fast contouring algorithm
that can be computed directly from an as-
sociated piecewise polynomial.

A 1-D example — an ODE Simulation:

A predator-prey relationship can be modeled
by the well-known IVP:

/
y1 = y1 — 0.1y1yo + 0.02z

/
Yo = —y2 + 0.02y1y> + 0.008z
with
y1(0) = 30, y2(0) = 20,

where y1(x) represents the ‘prey’ population
at time x and y>(x) represents the ‘predator’
population at time z. The solution can then
be visualized as a standard z/y solution plot or
by a ‘phase plane’ plot. Consider the use of a
standard ODE software package such as an 8th
order CRK method to investigate properties of
solutions to this problem.

A) Visualization Using Discrete Solution Only:

120

100 i

80 b

60 b

22

4
10 20 30 40 50 60 70 80 90 100 110

B) Visualization Using Splines:

120

100

60

40

20F I ¥ X\

2
10 20 30 40 50 60 70 80 90

100

110

10

C) Visualization Using a DEINT (Differential
Equation Interpolant):

120

100

80

60

40

N\ A
20F X X\ X\
] X

I I I I I I
0 5 10 15 20 25 30 35 40

11

The Generic Approach in one Dimension

Consider the 1%-order system

y = f(z,y).

A pth-order, s-stage RK method determines

S
yi = Yi—1+h > wik;,
=1

where

S
ki = f(xi—1 4+ hejyim1 +h Y ajeke).

r=1
A Continuous extension (CRK) is determined

by adding extra stages to obtain an order p
approximation for = € (z;_1,x;)

5 T — 21
ui(z) = yi—1+h > bs(-)E;,
j=1

where b;(7) is a polynomial of degree p.

12

That is, one determines k,41,ks4o...ks and
polynomials b,;(7) to ensure:

wi(x;) = vi,
wi(wi) = f(wi, i),
w;(z) = y(x) + O(RP), =z € [z;_1, ;]

Collectively the u;(x) define a piecewise poly-
nomial approximation to y(z) that is O(hP) ac-
curate for x > zg . We call this pp the Differ-
ential Equation Interpolant (DEINT).

13

Different Numerical Methods will give
indistinguishable Visualizations.

Consider approximate solutions to the preda-
tor/prey problem with the 8th order CRK method
and the built-in MATLAB method, ode45. Vi-
sualizing using the associated DEINTs we have:

14

Extension to 2D and 3D

—For details see Enright(2000),’Accurate
approximate solution of PDEs at off-mesh points’,
ACM TOMS.

Consider the following 2D-PDE from the
ELLPACK collection

Uzx + uyy = COS(my)u— (L 4sin(7z))uz + f(x,y)
on the domain
0<z<1 0<y<1,
with boundary conditions
u(x,y) = cos(By) + sin B(x — v),
where B = 10.

15

Visualizing the solution with a DEINT:

7w
eyt

%'
///W/////

/i
5

(a) Surface Plot (b) Contour Plot

Figure 1 Visualization Using Piecewise Linear Interpolation.

(a) Surface Plot (b) Contour Plot

Figure 2 Visualization Using Piecewise Polynomial on 8 x 8 mesh with 16 x 16
refinement.

16

A 3D PDE Example:

The Wave Equation: (Vibrating membrane)

uet — -25(uze + uyy) = 0,
domain: 0<?t<2 0<z<L2 0L y<2,

bound cond: u(t,z,y) = 0, and init cond:

u(0,z,y) = 0.1sin(wx)sin(ry/2), us(0,z,y) = 0.

The approximate solution of this problem can
be effectively displayed using a movie (anima-
tion) to show the evolution of the membrane
over time. For reasonable visualization we re-
quire at least a 128 x 128 x 128 resolution.

17

Snapshot at ¢t = 0 Wave eqgn:

Membrane Displacement: t = 0.000

Membrane Displacement: t = 0.000

(a) Surface Plot (b) Contour Plot

Figure 3 Visualization Using Piecewise Polynomial on 10 x 10 x 10 mesh with 10 x
10 x 10 refinement at ¢t = 0.

Membrane Displacement: t = 0.000

Membrane Displacement: t = 0.000

(a) Surface Plot (b) Contour Plot

Figure 4 Visualization Using Piecewise Polynomial on 20 x 20 x 20 mesh with 5x5x5
refinement at ¢t = 0.

18

Snapshot at ¢t = 1.34 Wave eqn:

Membrane Displacement: t = 1.340

Membrane Displacement: t = 1.340

(a) Surface Plot (b) Contour Plot

Figure 5 Visualization Using Piecewise Polynomial on 10 x 10 x 10 mesh with 10 x
10 x 10 refinement at ¢t = 1.34.

Membrane Displacement; t = 1.340

Membrane Displacement: t = 1.340

(a) Surface Plot (b) Contour Plot

Figure 6 Visualization Using Piecewise Polynomial on 20 x 20 x 20 mesh with 5x5x5
refinement at ¢t = 1.34.

19

Snapshot at ¢t = 2.0 Wave eqn:

Membrane Displacement: t = 2.000

Membrane Displacement: t = 2.000

(a) Surface Plot (b) Contour Plot

Figure 7 Visualization Using Piecewise Polynomial on 10 x 10 x 10 mesh with 10 x
10 x 10 refinement at ¢t = 2.0.

Membrane Displacement: t = 2.000

Membrane Displacement: t = 2.000

(a) Surface Plot (b) Contour Plot

Figure 8 Visualization Using Piecewise Polynomial on 20 x 20 x 20 mesh with 5x5x5
refinement at ¢ = 2.0.

20

For 3D problems the DEINT associated with
a quasi-linear PDE is defined by solving a se-
quence of linear system of equations. For each
coarse mesh element, e, We determine a trivari-
ate polynomial, pg (¢, z,y), of degree d that

e interpolates the mesh data (K constraints)

e almost satisfies the differential equation at
m collocation points where m = (d+1)3 —
K.

Note that the ‘cost’ of determining the coeffi-
cients of pg .(t,z,y) is a few evaluations of the
PDE and the solution of one linear system of
dimension (d + 1)3.

21

Note:

1. If the resolution of the display device re-
quires a 'fine mesh’ of NF M points to dis-
play a non-distracting visualization of a 1D
curve then we should expect that NFM?
points would be required to diplay a sur-
face.

2. Contour curves should require less work to
generate than surface plots. (O(NFM) vs
O(NFM?2).)

3. This could be particularly significant if we
are using animation to visualize the evolu-
tion over time of a PDE solution.

22

The basic MATLAB contouring algorithm:

21
P
t3 /l/'
t Lo //'
b I'g
ol
Zr o I1 9 I3 T4
(a) Contour line associated with (b) MATLAB approximation (re-
the DEI and a straight line approx- fined in z and ¢ directions with
imation on a coarse mesh element NFM = 4)

Figure 7 MATLAB uses linear interpolation and requires a regularly spaced mesh

— ‘Refine’ in z,t by evaluating py(t;,z,;) at NFM?
points.

— ‘Contour’ the PL interpolant associated with
this fine mesh.

— The cost is O(NFM?) for each element. This
IS usually considerably cheaper than ‘solv-
ing’ the PDE on the fine mesh. (But more
expensive than necessary when one is ap-
proximating a 1D-object.)

23

Figure 8 Generic Fast Contouring Algorithm

for each element e
Imin(e) +— minimum value of element
IMax(e) « maximum value of element
end for
gmin <— min(Imin)
gMax < max(IMax)
if contour vector not provided then
generate evenly spaced contour levels between gmin and gMax
end if
for each element e
for each contour level v
if Imin(e) < v <IMaz(e) then
for each edge s
if v intersects s then
intersections(e) < (2, t)intersect
end if
end for
count ¢ size(intersections(e))
compute contour using FCINT, FCODE or FCODEA
end if
end for
end for

Note that the most common case will be count =
2 and we will focus on this in our analysis and
algorithm discussion. Everything generalizes
in an straightforward way to other values of

count.

24

The ‘Intercept Method’, FCINT:

M

. }/

T o Tl r2 I3 T4

(a) True contour line associated (b) FCINT approximation (refined
with the DEI in z only)

Figure 9 FCINT refines in only one direction.

— Based on the observation that for fixed z« ,
pq(t,z) reduces to a univariate polynomial
of degree d in t, q(t) and along such a line,
we can solve for the roots of

q(t) —v =0.

The coefficients defining ¢(¢) will depend
on .

25

— The cost is O(NFM) for each element but
the constant can be large since it involves
forming and determining the roots of a
polynomial. These tasks are not easily vec-
torizable.

— We can choose to ‘Refine’ in t rather than
. T hatis, we can parametrize the contour
curve by (x(t),t) rather than by (z,t(z)).

26

The ‘Simple ODE’ method, FCODE:

We attempt to directly approximate the curve
(z,t(x)) such that py(t(z),z) = v over a pre-
scribed range of . Differentiating this relation
wrt and rearranging terms we observe that
t(x) satisfies the ODE,

pa(t(2),)
pt(t(az),a})
For any fixed z value, t(x) can easily be com-

te(x) = = F(t(z),x).

puted (if it exists) by solving a univariate poly-
nomial equation (as in FCINT). We can use
this observation at x = z1 to determine an ‘ini-
tial value’ for the ODE. We then approximate
the contour by approximating the solution of
the ODE IVP problem for z € [z1, z5].

27

]
t t
H(x)
x T £1%2 o
(a) True contour line associated (b) FCODE approximation for two
with the DEIT steps of an ODE solver

Figure 10 FCODE computes ¢t and ¢, at the midpoint and end points, and uses
Hermite Interpolants H,(z) and Hz(z) to approximate ¢(x).

— When d < 3 an appropriate 1D ODE DEINT
IS the piecewise Hermite that interpolates
t(x) and tz(x) on the discrete mesh used to
solve the ODE on the interval [z1, z5].

— If the ODE is close to singular (ie. pi(t(x), z)
near 0), we can use the parametrization
(z(t),t) and solve an ODE IVP for x(t).

— The cost of FCODE is O(NF M) per element
with a small constant (vectorizable).

28

— If neither parametrization is well behaved for
the whole interval of interest one can use
pseudo-arclength, (FCODEA). This will re-
sult in @ more expensive but more robust al-
gorithm to approximate the contour curve,
(z(s),t(s)) by solving an associated system
of IVP ODEs.

The cost will be roughly double the cost of
FCODE. In all our testing we did not en-
counter a situation where it was necessary
to use this alternative parametrization.

29

Numerical Results:

Consider the modeling of a conducting rod in
a nuclear reactor

92u n KT %8_11,7 (1)
ox pC ot
on the domain 0 < z < 1,0 < t < .5 with
boundary conditions u(0,t) = u(l,t) = 0, for
0 <z < and u(zx,0) = sin ==, fort > 0. We
have used | = 1.5, k = 1.04, p = 10.6 C' =

0.056 and r(z,t,u) = 5.0.

(a) Surface representation with
lighting effects.

(b) Default MATLAB contour plot.

Figure 14 Solution to the Nuclear test problem

30

Contour curves for the different Algorithms:

(a) MATLAB/DET (fm - em = 2°) (b) MATLAB/DEI (fm - cm = 2°)

(c) FCINT (fm - em = 25) (d) FCINT (fm - om = 26)

(e) FCODE (fm - cm = 2°) (f) FCODE (fm - cm = 25)

Figure 16 Contour for the Nuclear test problem based on a 2*x2* coarse mesh .

31

Results and Conclusions:

e Direct computation of contour lines can be
efficient and accurate. It is not necessary
to approximate the solution surface.

e [he techniques we have developed apply
to unstructured rectangular and triangular
meshes in 2 and 3 dimensions.

e [he fast algorithms we have developed for
computing contour curves can be extended
to apply to more general contouring prob-
lems (such as those discussed by Grandine
in a recent SIAM Review paper).

32

Approach can be modified and extended in
several ways:

e 'Nearby’ solution values can be used if deriva-
tive data not available at meshpoints.

e First-order, higher-order and mixed-order
systems.

e Total degree d interpolation (rather than
tensor product interpolation). This gives
fewer unknowns, same order but larger er-
ror coefficients.

e 4D problems (¢t and 3 space dimensions).

e EXxtension to special classes of nonlinear
PDEs such as KdV and other Boussinesq-
like PDES.

33

