$\ell^1\text{-}{\rm spreading}\ {\rm models}\ {\rm in}\ {\rm mixed}\ {\rm Tsirelson}\ {\rm spaces}$

Denny H. Leung and Wee Kee Tang

Mixed Tsirelson space $T[(\theta_n, S_n)_{n=1}^{\infty}]$

 $(\theta_n) \subseteq (0,1)$ nonincreasing null sequence, $\theta_{m+n} \ge \theta_m \theta_n$ for all m, n.

 \mathcal{S}_n Schreier families

 $S_{1} = \{E \subseteq \mathbb{N} : |E| \leq \min E\}$ $S_{n+1} = \{\bigcup_{i=1}^{n} E_{i} : E_{i} \in S_{n}, E_{1} < \dots < E_{n}, n \leq \min E_{1}\}$ $S_{\omega} = \{E : E \in S_{n} \text{ for some } n \leq \min E\}$ $(E_{i})_{i=1}^{n} \text{ is } S_{n}\text{-admissible if } E_{1} < \dots < E_{n} \text{ and } \{\min E_{i}\}_{i=1}^{n} \in S_{n}.$

Let (e_n) be the unit vector basis of c_{00} . If $E \subseteq \mathbb{N}$ and $x = \sum a_n e_n$, then $Ex = \sum_{n \in E} a_n e_n$.

 $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ is the completion of c_{00} with respect to the implicitly defined norm

$$||x|| = ||x||_{c_0} \vee \sup_n \theta_n \sup \sum_{i=1}^k ||E_i x||,$$

where the last sup is taken over all S_n -admissible families $(E_i)_{i=1}^k$.

ℓ^1 - \mathcal{S}_{α} -spreading models

A bounded sequence in a Banach space (x_n) is an ℓ^1 - S_{α} spreading model if there exists $\delta > 0$ such that

$$\left\|\sum_{n\in E}a_nx_n\right\| \ge \delta \sum_{n\in E}|a_n|$$

for all $E \in \mathcal{S}_{\alpha}$.

Theorem 1. (Argyros, Deliyanni and Manoussakis) If $\lim \theta_n^{1/n} = 1$, then every block subspace of $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ contains an ℓ^1 - \mathcal{S}_{ω} -spreading model.

"Non-hereditary" situation

 $\mathbf{4}$

Theorem 2. If $\lim_{n} \limsup_{m \in \mathbb{N}} \theta_{m+n}/\theta_m > 0$, then every subspace of $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ generated by a subsequence of the unit vector basis contains an ℓ^1 - \mathcal{S}_{ω} -spreading model.

Remark. This is the best possible for the "non-hereditary" question, in view of the following observations.

- 1. (L. & Tang) If $\lim_{n} \limsup_{m \in \mathcal{H}_{m+n}} \theta_{m+n} / \theta_{m} = 0$, respectively > 0, then the Bourgain ℓ^{1} -index of $T[(\theta_{n}, \mathcal{S}_{n})_{n=1}^{\infty}]$ is ω^{ω} , respectively $\omega^{\omega \cdot 2}$.
- 2. (Judd & Odell) The Bourgain ℓ^1 -index of any separable Banach space X not containing ℓ^1 is of the form ω^{α} . The order of any ℓ^1 -tree in X is strictly less than the ℓ^1 -index.
- 3. If a block subspace of $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ contains an ℓ^1 - \mathcal{S}_{α} spreading model, then it contains an ℓ^1 - $\mathcal{S}_{\alpha+n}$ -spreading
 model (with different constants) for all n.

The "hereditary" question

Let X be a block subspace of the mixed Tsirelson space $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$. If X contains an ℓ^1 - \mathcal{S}_{ω} -spreading model, then

$$\lim_{n} \limsup_{m} \theta_{m+n} / \theta_m > 0 \qquad (\dagger)$$

must hold. On the other hand, if (\dagger) holds and X contains a block equivalent to a subsequence (e_{k_n}) of (e_n) , then X contains an ℓ^1 - \mathcal{S}_{ω} -spreading model.

Theorem 3. The following statements are equivalent.

- 1. (†) holds and X contains a normalized block (x_n) that is equivalent to the sequence (e_{k_n}) , where $k_n = \max \operatorname{supp} x_n$,
- 2. X contains an ℓ^1 - \mathcal{S}_{ω} -spreading model,
- 3. X contains ℓ^1 - S_n -spreading models with uniform constants,
- 4. The Bourgain ℓ^1 -index of X is $\omega^{\omega \cdot 2}$.

Remark. The theorem of Argyros, Deliyanni and Manoussakis follows because of

Theorem 4. (Judd and Odell) If X contains an ℓ^1 - S_{2n} -spreading model with constant δ , then it contains an ℓ^1 - S_n -spreading model with constant $\sqrt{\delta}$.

The key step is captured in the following proposition. For every n, let $\|\cdot\|_n$ be the equivalent norm on $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ defined by

$$||x||_n = \sup \sum_{i=1}^k ||E_i x||,$$

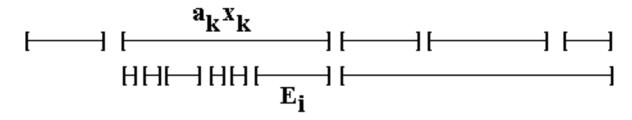
where the sup is taken over all S_n -admissible families $(E_i)_{i=1}^k$. If $X = [(z_k)_{k=1}^\infty]$ for some block sequence (z_k) , the *n*-tail of X is $[(z_k)_{k=n}^\infty]$.

Proposition 5. Assume that X has the following property:

(*) There exists $C < \infty$ such that for all n, there exists x in the n-tail of X with ||x|| = 1 and $||x||_n \leq C$.

Then X contains a normalized block (x_n) that is equivalent to the sequence (e_{k_n}) , where $k_n = \max \operatorname{supp} x_n$,

Observe that 4. of Theorem 3 implies (*). For all n, 4. of Theorem 3 gives a finite block sequence $(x_k)_{k \in I}$ in the *n*-tail of X (uniformly) equivalent to the $\ell^1(I)$ basis so that {max supp $x_k : k \in I$ } is a maximal S_{n+1} set. Choose scalars (a_k) so that $\sum_I |a_k| = 1$ and $\sum_{k \in F} |a_k|$ is small whenever {max supp $x_k : k \in F$ } $\in S_n$. Take $x = \sum_{k \in I} a_k x_k$.



Sum over long E_i 's ≤ 1

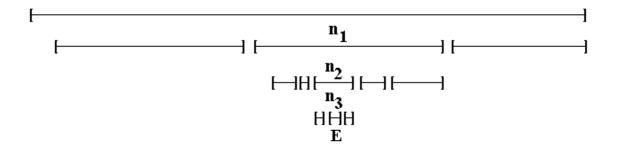
Sum over short E_i 's $\leq \theta_n^{-1} \sum_{k \in F} |a_k|$ for some set F such that $\{\max \operatorname{supp} x_k : k \in F\} \in \mathcal{S}_n$.

Remark. If X has (*), then for all n, there exist $y, z \in X$ such that ||y|| = ||z|| = 1, and $||y||_n \leq C$, $||z||_n \sim 1/\theta_n$. Consequently, if (*) holds hereditarily, then the sequence of norms $(|| \cdot ||_n)$ arbitrarily distorts $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$.

Admissible trees

8

The norm of an element in $T[(\theta_n, \mathcal{S}_n)_{n=1}^{\infty}]$ can be computed by means of admissible trees.



- If a node splits, its children form an S_n -admissible collection for some n.
- For the node E shown, we assign it a tag $t(E) = \theta_{n_1}\theta_{n_2}\theta_{n_3}$. We also let $\ell(E) = n_1 + n_2 + n_3$.
- $\mathcal{T}x = \sum t(E) ||Ex||$, summing over all terminal nodes.
- $||x|| = \sup \mathcal{T}x$, sup taken over all admissible trees \mathcal{T} .
- With respect to a particular element x, we can always choose to split the nodes of an admissible tree until $||Ex|| = ||Ex||_{c_0}$ for all terminal nodes E.

Proof of the Proposition. Choose $1 = n_0 < n_1 < \ldots$ and a normalized block (x_k) in X so that

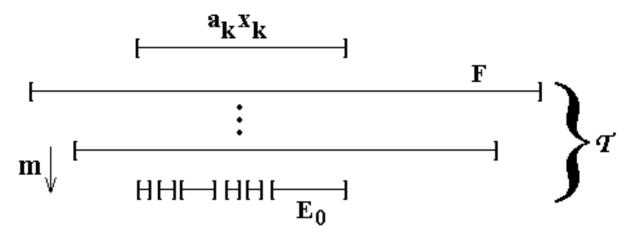
- $\bullet \|x_k\|_{n_{k-1}} \le C,$
- $\theta_{n_k} \| x_k \|_{\ell^1} \le 1/2^k$.

We want to show that

$$||x|| = ||\sum a_k x_k|| \le ||\sum a_k e_{j_k}|| = ||y||,$$

where $j_k = \max \operatorname{supp} x_k$.

Consider an admissible tree \mathcal{T} . A node in \mathcal{T} is *short* if it is contained in supp x_k for some k. We assume that a node is terminal in \mathcal{T} if and only if it is short.



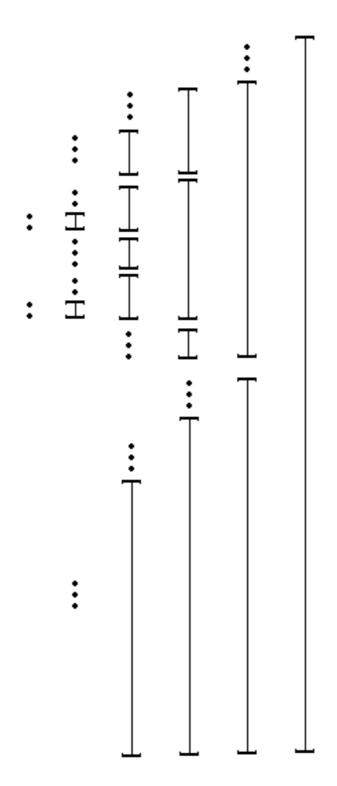
Case I. $m \leq n_{k-1}$

 $\sum_{E} |a_k| t(E) || E x_k || \le C |a_k| t(E_0) = C |a_k| t(E_0) || E_0 e_{j_k} ||_{c_0}$ Case II. $\ell(E) \ge n_k$

$$\sum_{E} |a_k| t(E) ||Ex_k|| \le |a_k| \theta_{n_k} ||x_k||_{\ell^1} \le |a_k|/2^k$$

Case III. $n_{k-1} < m \leq \ell(E) < n_k$

Observe that $\sum_{E} |a_k| t(E) ||Ex_k|| \le |a_k| t(F)$



Let \mathcal{A}_n be the family of all subsets of \mathbb{N} with at most n elements. Define the mixed Tsirelson space $Z = T[(\theta_n, \mathcal{A}_n)_{n=2}^{\infty}]$ with \mathcal{A}_n in place of \mathcal{S}_n . The foregoing arguments show:

Theorem 6. If $\lim \theta_{2n}/\theta_n = 1$, then every block subspace of Z contains a block sequence equivalent to the unit vector basis (e_k) of Z. It follows that Z is complementably minimal. Moreover, the sequence of norms

$$||x||_n = \sup\{\sum_{r=1}^n ||E_r x|| : E_1 < \dots < E_n\}$$

arbitrarily distorts Z.

These results are due to Schlumprecht.