Some Ordinal Indices in Banach
Space Theory

The Szlenk index:
If X is a Banach space, A C X, B C X*, and
e > 0 let

Py(e, A, B) = B,

for all a < wq,

Pot1(e, A, B) = {z* € X* : 3(a},) € Pale, A, B),
A(zn) € A, x), W, *, xn — 0, and limz’(zy) > 6}

and for limit ordinals, B3,

PB (e,A,B) = ﬂa<5Pa (e, A, B)

Usually A= Bx and B = Bxx. (By ={y €Y :
lyll < 1})



If X and X™ are separable, there is an ordinal
a < wi, such that

Pa(é‘, BX: BX*) 7+_ Q)

and

Pa-|—1(€7 BXaBX*) = 0.

ne,X) =a+1
is the € Szlenk index of X.

n(X) = supn(e, X)
e>0

IS an isomorphic invariant called the Szlenk in-
dex of X. (If the sets are never empty, the
Szlenk index is wi.)

It is not hard to see that

T* € POZ(E:aBXaBX*) =z € Pa-k(g/k7BXaBX*)'

Thus the index is always of the form w?.



The Szlenk index of a space is larger than or
equal to the index of both its subspaces and
quotient spaces.

Theorem 1 (Szlenk). There is no separable,
reflexive Banach space X such that every sep-
arable reflexive Banach space is isomorphic to
a subspace of X.

Proof: For every a < wi there are separable
reflexive spaces with Szlenk index larger than
.



Variants of the Szlenk index:

Pot1(e, A, B) = {z* € X* : 3(x}) € Pale, A, B),
T wy z”, lim ||z, — ™[] > 5}
If X™ is separable or X does not contain a sub-
space isomorphic to ¢7, this change gives a
slightly different e-Szlenk index, but n(X) is
unchanged.

Convex Szlenk index [Godefroy-Kalton-Lancien]:

Py+1(e,A,B) = @{x* X* 1 3(x}) € Pale, A, B),
x

&

n S o lim o, — 27| > e}
This was applied in the theory of uniform home-

omorphism of Banach spaces and renormings
in the finite € index case.



The Szlenk index has been computed for some
spaces. A particularly interesting case is that

of C(K) where K is a countable, compact met-

ric space. Here the index parallels the
Mazurkiewicz-Sierpinski classification of the count-
able compact metric spaces.

Recall that K(0) = K, K(at+1) js the set of lim-
its of non-trivial sequences in K(®) and K(®) =
Ng<a KB for limit ordinals.

If K(7) has finite positive cardinality n, then K
is homeomorphic to [1,w” - n].

(I will abbreviate C([1,w? -n]) to C(wWY -n).)

It is easy to see that for 0 <e <1

d7 € Pv.[l/g](&‘, BC(uﬂ-n)’ BC(w7°n)*)



Thus

n(e, C(wY -n)) > v-[1/e] + 1.

This in fact is the correct order ([Samuel], oth-
ers). So

n(Cw? k) =~ w.

Theorem 2 (Bessaga-Pelczynski). If a < 8,
C(w® - k) is isomorphic to C(wP -n) if and only
if B < a-w. Consequently, C(w®'), v < wq, is
a complete list of representatives of the iso-
morphism classes of C(K) for K a countable
compact metric space.

If K is uncountable then n(C(K)) = wq.



Question 3. Suppose that K is a compact
metric space, X is a Banach space, T : C(K) —
X is bounded and v < wi. What is the largest
ordinal 8 such that if n(e, BC(K,T*(BX*)) > w7,
then there is always a subspace Z of C(K) such
that Z is isomorphic to C(wwﬂ) and Tz is an
isomorphism?

If v =0, 8 = 0. [Pelczynski]
Ify=1, 8 =1. [A]
For any ~, w? > w-~. [Bourgain]

If1<({<y<(-wforsome(<wi, B<a.
[A], [Gasparis]



Bourgain deduced the following result from his:

Theorem 4 (Rosenthal). Suppose that K is
a compact metric space, X is a Banach space,
T: C(K) — X is bounded and T(Bx=x) is non-
separable, then there is a subspace Z of C(K)
isomorphic to C([0, 1]) such that Tj 7 is an iso-
morphism.

A few other connections between the Szlenk
index and the spaces of continuous function
are the following:

Theorem 5 (A-Benyamini). If X is a sepa-
rable Loo-Space, € > 0, and n(e, X) > w7, then
C(w*”) is isomorphic to a quotient of X.



A major step in the solution of the separable
injective problem was

Theorem 6. (Zippin's Lemma) Let X be a
Banach space with separable dual, € > 0 and
let F' be a w*-totally disconnected subset of
Bxx which is (1 —e)-norming. Then there is a
countable ordinal a < w"(/8:X)+1) 3 subspace
Y of C(F), isometric to C(«) such that for ev-
ery z € X there is a y € Y with [[Z)p —y|| <
c(1 - )73 pll



In Szlenk’s definition of the index the weakly
null sequences play an important role. If we
think of a Banach space X as a subspace of
C(Bxx*,w*), then we are looking at sequences
of functions which are converging pointwise to
0, but not uniformly and the Szlenk sets are
measuring the non-uniform convergence.

Let us change our focus to the behavior of a
single weakly null not norm null sequence (frn).
A classical theorem of Mazur asserts that there
is a sequence (gi) such that

lim lgg|l =0,
k— o0
gk = Y _ anfn, Where ay >0 for all n,

nEFk

1= ) an, forallk,
nEFk

Fi<bky<: - - <Fp<Fpyp1<...
(F) < Fri1 iff max Fr, < min Fk—l—l)-

This result is very much an existence state-
ment.



The simplest possible convex combination is
an average. Consider the following:

S ={FCN:|F|<F}u{0}

It is easy to see that &7 is closed in 2N and
thus compact. Moreover S%“’) = {0}. Define a
sequence of functions on &7 by

fn p— 1{F2n€F} for all n € N.

If we think of the sequence (fn) as a sequence
in C'(S1), it converges pointwise to 0. However
if G is any finite subset of N

G
> futr) 2 19
neG
where F={m e G:m > (|G|+ 1)/2}. Hence

1 1
| — fnl > =.
G 2,75



Thus no sequence of averages of elements from
(fn) converges to 0 in norm.

This example is essentially that given by Schreier
in 1930. For each ordinal a < w1 there is a
family of subsets of N, So, which has analo-
gous properties, [A-Argyros],[A-Odell].

Let So = {{n} : n € N} U{0} and suppose that

So has been defined. Let

Soq1={Ur F: E<F <P < - < F,
F; € Sa, 1 <i<k,keN}uU{0}.

If o is a limit ordinal, let (an) be a strictly
increasing sequence of ordinals with limit o and
define

Sa = Up1{F € Sa,, : n < F} U {0}.



The families S, have the following properties:

o If F={m;:1<i<j} (mi)jzl increasing,
then any increasing sequence (ni)j:]L with
m; < n; for all ¢, {n; : 1 <1 < 5} € Sa.
(spreading)

o If €Sy and G C F, then G € 8&,. (hered-
itary)

e S, is homeomorphic to [1,w® ] in 2N.

e [ he sequence of functions on S, defined
by fr' = lyp:nery fOr n € N converges to O
pointwise.



Sometimes it is useful to insert some additional
families of sets between S and §,41, €.9., by
taking a fixed natural number n and k£ < n
in the inductive definition. This makes some
induction arguments easier. (Farmaki has for-
malized this.)

Some work has been done on combinatorial
and permanence properties of the Schreier fam-
ilies. For example, if we have two families of
finite subsets of N, F and G, with properties
like those of the Schreier families (hereditary,
spreading and closed ) it is possible to compose
the families:

GIFl={UyF: Fi<F< - - <F,FeF
for i < k,(minEF)%_; € g}.

Using this operation S,11 = S1[Sa].



Moreover it was shown
[Odell-Tomczak-Jaegermann—Wagner] that the
Schreier classes are almost closed under this
composition operation, i.e., for a« and g there
are infinite subsets M, N of N such that

Sa[SB](M) C Sﬁ-l-a and Sﬁ_|_a(N) C Sa[Sﬂ].

There are also some results about the relation-
ship between hereditary families of sets and the
Schreier families, e.g., [Gasparis], [Judd].

Theorem 7. ([G]) Let F be a hereditary family
of finite subsets of N, a < w1, and an infinite
subset N of N. Then there exists an infinite
subset M of N so that either So N 2M c F or
Fn2M ¢ s,.

The Schreier families give a hierarchy that has
proved quite useful for analyzing things that
depend on “blocking”. In particular various av-
eraging schemes have made use of the families.



These can be found in papers investigating
more constructive versions of Mazur’s theorem
which also give some additional information,
e.g., [Argyros-Merkourakis-Tsarpalias], [Argyros-
Gasparis]. The Schreier families are used to
make sense of repeated averaging. Thus given

a sequence (zy) one can describe constructing
sequences of the form

Z ZnQEGQ,nl L)
> neGy Tn “~M1€G2 (G2 nq |

G1l G2




The Schreier families have also been used for
quantifying the ¢4 structure of an asymptotic
¢1-space, [O-T-W]. Tsirelson space (the dual
of the original example) has the property that a
sequence of n blocks of the basis starting after
n are equivalent to the {7 basis. These blocks
have supports in S;. In [O-T-W] parameters
are introduced to give useful answers to ques-
tions about Tsirelson space and its generaliza-
tions such as: What sequences of blocks with
supports in Sy are equivalent to the {}-basis?
What if we pass to a block of the original basis
and then take further blocks in some S,7



There is also an interesting family of Banach
sequence spaces defined using the Schreier sets.
The ath Schreier space, X, has norm

[(zn)|e = Sup | > onl.

Sa nekl’
The natural basis (f%) is unconditional. In
[Gasparis-Leung] it is shown that the comple-
mented subspace structure of these spaces is
very rich. Because these spaces seem analo-
gous to C(w®”) but with unconditional basis
one can start asking questions similar to those
that have been investigated for the spaces C(w¥").

Question 8. Can subspaces of C(K) which
have a subspace isomorphic to X, be detected
by some ordinal index? If a subset of Bg(gy)
norms a subspace Y which is isomorphic to X,

must it also norm a subspace isomorphic to
C(w¥™)7?



A recurrent theme in much of this work is
a need to deal with #¢1 or Ei" behavior but
in spaces that do not contain ¢;. Bourgain
introduced a ¢7 index in an attempt to de-
scribe “partial containment of ¢1.” For this
notion we need to recall a standard method
of defining an ordinal index on well-founded
trees. Our trees will be constructed by tak-
ing finite sequences from a fixed set and or-
dering them by extension. The assumption of
well-foundedness means that there is no infi-
nite linearly ordered subset (branch).



Now we can define a notion of derived set by
stripping off terminal elements.

Let T be a tree on X and 70 = 7. If T is
defined, let

Tt = {(z)f=1 €T Iy; € X,j=1,2,...,n,
for some n €N, (z1,z2,...,Tk, Y1,Y2,...,Yn) € T}

For limit ordinals T9 = n,«gT%. The order of
the tree, is the smallest ordinal o« such that
T = ().

Fix a constant K > 1. Let X be a Banach space
and let

T = {(z;)i=1 ' z; € X,
|z;|| =1, fori=1,2,...,k, k€N,
and
k k k
K13 ai < 1Y aill < ayl
i=1 i=1 i=1

for all a; e R, 1 < < k}



This is Bourgain's local ¢1-index for constant
K. We take the supremum over all K > 1 to
get an index for the space.

e The tree T is well-founded exactly when
there is no normalized sequence in X which
Is K-equivalent to the usual unit vector ba-
sis of /7.

e T here are reflexive spaces with large ¢1 in-
dex.

e The index of the Schreier space X, is w®t1.
(A-Judd-Odell)



Because of the results of James on the non-
distortability of £1, it might be expected that
the constant K plays a minimal role in this
index. This has been confirmed in [Judd-Odell]
where it is shown that there is a method of
constructing trees with improved constants K
with controlled decrease in index.

If we remove the absolute values in the defini-
tion above we get a local Ei" index.

T={(z))f_1:2;€ X,||zi|| =1, for i =1,2,...,k,
k k
k € N, and K1 Z a; <|| Z a; ;||

1=1 1=1
for all a; e RT,1 <4<k}

The 61" index is countable exactly when the
space is reflexive. ([James], [Milman-Milman])
The 61" condition is closely related to Rosen-
thal's notion of a wide-(s) sequence.



Sometimes it is possible to create a Szlenk-like
index which gives similar information to that of
an index defined by trees.

Suppose that (fn) is a bounded sequence of

continuous functions on a compact metric space
U which converges pointwise. Fix € > 0 and

define for each n,m € N,

A,,',Ll',m ={ueU: fa(u) — fm(u) > e}

Ay = {u €U fulw) — fn(u) < —¢)

Now we define 0%, (f,),U) = U and for all
o < wi,

Ot (e, (fn),U) = {u € O%(e, (fn),U) :
VV open,ucV,ANeN>IVn>N,dM € N>
N>y A N 0%(e, (fn), U)YNV # 0
or
Nm>M A N O%(e, (fn), U) NV # 0}

As usual we take the intersection at a limit
ordinal. The corresponding index is the
e oscillation index of the sequence (fr).



The condition imposed on the points in the
underlying topological space U in the definition
of the oscillation sets is much more restrictive
than that in the definition of the Szlenk sets
and thus this index is smaller than the Szlenk
index. If we take the Schreier family, Sqo as
the space U and the associated sequence (f%),
then for 0 < e < 1, O¥ (e, (f2),U) # 0. This
shows that the oscillation index is maximal for
this sequence and that in this case the Szlenk
index can be computed by using a single weakly
null sequence.

In [A-A] it is shown that the oscillation index
gives information about the local ¢1 index.

Theorem 9.If (f,) is a bounded, pointwise

converging sequence on a compact metric space
U and for some e > 0 and «, O%(e, (frn),U) # 0,

then there is a local £1-index tree on (fy) with

index at least a/2.



Bourgain shows that the local £1-index is re-
lated to the Lavrentiev index of the pointwise
limit of a sequence of continuous functions.
The oscillation index of the sequence is also
essentially bounded below by the Lavrentiev
index of the limit.



We want to consider one more index which is
based on trees. We use £1|' trees but we make
an additional requirement that if

(xl,xQ,...,xn,yj)ET for y =1,2,...
then
Yj = 0.

We also require that ” forking”’ must be infinite,
i.e., if a sequence in the tree is not maximal
then there must be infinitely many extensions
of the same length. (Some additional technical
assumptions are also imposed.) To make sure
that we can actually have interesting trees of
this type, we need many weakly null sequences.

Thus separability of the dual or at least not
having ¢1 in the space is generally assumed.



Once we have suitably restricted the trees which
are allowed we compute the order of each tree
as before and take the supremum over all

K > 1. The resulting index is called the weakly
null (local) 61" index.

Theorem 10. ([A-J-O])) If X is a separable Ba-
nach space not containing ¢1 then the Szlenk
index and the weakly null 61" index are equal.

Here we have an example of two indices of
a Banach space which superficially appear to
give quite different information and are cer-
tainly computed in very different ways, vet yield
the same index.

Question 11. What other ordinal indices have
“dual” versions?



One way that the ¢ Szlenk derived sets have
been used is to carve the unit ball of the dual or
other subset of the dual into pieces of norm di-
ameter at most € as in Zippin's Lemma. This s
adequate for some purposes but other times it
would be convenient to use more than one ¢ or
even a sequence (e;) which decreases to zero.
Unfortunately the Szlenk sets for different val-
ues of € are only loosely related. Recently, I
have been working with an iterated version of
the Szlenk sets. Here is the basic idea.

Let (ej)fle be a decreasing sequence of posi-
tive numbers and let A C X and B C X*.
For a sequence of length one define

POC((£1)7A7B) — Pa(€17A7B)

for all a.



Suppose that

P’Y((€17€27 R 7€j—1)7A7B)

has been defined for all countable ordinals ~.
Let

PO((€17€27"'78j)7A7B) = B.

Suppose that Pu((e1,€2,...,€5), A, B) has been
defined and that «~ is an ordinal such that

Pfy((el,EQ,...,&‘j_l),A,B)
D Pa((e1,€2,...,€5),A,B)
») P,y_|_1((81,82, - ,8j_1), A, B).
Define
Pa+1((81,82, c o ,Ej),A,B) —
Pl(é‘j,A, Pa((é‘l,é‘z,.. .,{-:j),A,B))
UP,),_|_1((€1,82,...,Sj_l),A,B).
If g is a limit ordinal define

Pﬁ((€17527 s 76j)7A7B)
— ma<,8POé((817827 S 78j)7A7B)'



The point here is that the derived sets for
(¢1,€2,...,€5) are slipped in between the de-
rived sets for (e1,e2,...,€;-1) SO as to refine
the differences

P’Y((817827 - 78j—1)7A7B)
\P’y+1((617827 e 7€j—1)7A7B)'

Using this idea and a further modification of
the basic Szlenk index, it is possible to prove a
generalization of Zippin's Lemma which allows
for refinement.



