12. Normalization of intertwining operators.

Let m be a generic irreducible admissible representation of M(F'), F' local field.
Let A(s,m,wp) be the intertwining operator for I(s, 7). We normalize it in the
following way. Let

m
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Conjecture 12.1. N(s,m, wp) is holomorphic and non-vanishing for Re(s) > %
12.1 7 is supercuspidal.

Proposition 12.2. N (s, m, wg) is holomorphic and non-vanishing except possibly
at Re(s) = —1 or —3.

Proof. Write
e A(s, m,wp)

N (s, m,wp) = 2_1_[1 L(1 +is,m,ri)e(is, w,7i,0) Hzl Tlis. )"

Here [T, L(1+4is, m,r;) has a pole possibly at Re(s) = —1 or —3, and Hf(s’”’w")

i=1 L(i37777'ri)
is entire and non-vanishing. [

12.2 7 is tempered, generic.

Proposition 12.3. N(s,n,wp) is holomorphic and non-vanishing for Re(s) > 0,
except the 4 cases where Shahidi’s conjecture (Conjecture 11.13) is not proved.

Proof. By Harish-Chandra, A(s, 7, wg) is holomorphic and non-vanishing for Re(s) >
0. By Shahidi’s conjecture, L(s,m,r;) is holomorphic for Re(s) > 0. Hence our as-
sertion follows. For Re(s) = 0, it is a result of the theory of R-groups. O

Proposition 12.4. Let 0,7 be tempered representations of GLy, GL;, resp. Then
the normalized operator N (s, c®T, wq) is holomorphic and non-vanishing for Re(s) >
—1.

12.3 ™ is non-tempered, generic.

Let 7 be a generic irreducible, non-tempered representation of G(F'), F local. By
Langlands’ classification theorem, 7 = J(Ag, o), where o is an irreducible generic
tempered representation of M(F'), and Ag is in the positive Weyl chamber of a.
We call I(Ag, o) the standard module.

Standard module conjecture. m = I(Ay,0), i.e., I(Ag, o) is irreducible.

Assume the standard module conjecture. Then

I(s,7) = Indlc;':1 o ®exp((sa+ Ao, Hp,())), A(s,m,wg) = A(s+Ag, 0, wp).
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Lemma 12.5. Ifsa+Ay is in the corresponding positive Weyl chamber for Re(s) >
% and Shahidi’s conjecture (Conjecture 11.13) is true for each rank-one situation,

then N (s, m,wo) is holomorphic for Re(s) > 3.

Lemma 12.6. Assume Conjecture 11.13 for each rank-one situation. If N(s& +
Ao, 0,wp) is holomorphic at s = sg, then it is non-zero at s = sy.

We need a result on bounds of Fourier coefficients.

Proposition 12.7. Let m = ®,m, be a unitary, generic cuspidal representation
of M(A). Fix a place v where m, is non-tempered. Assume the standard mod-
ule conjecture and write m, as m, = Ip, (Ao, mo). Assume Conjecture 11.13 for
each rank-one situation so that Lemma 12.5 may be applied. Then the normal-
ized operator N (s, m,,wy) and the local L-function L(s,m,, ) are holomorphic for

Re(s) > 1

Proof. Fix a place w where 7, is spherical. By checking the L-functions in section
6 (or use [Ki-Sh, Proposition 2.1]), we can take a grossencharacter y such that

(1) x» =1 and x4, is highly ramified;

(2) wo(r ®@x) £ 7@ X;
(3) wy(m; @ x) # m @ x for all ¢, where =} is as in Theorem 7.1, namely,
L(s,m,r;) = L(s,m,r]), and wy is the Weyl group element for =;.

Then M(s,m ® x,wo) and M(s,m, @ x,wq) are holomorphic for Re(s) > 0
by Corollary 5.5. Hence by omitting x, we can assume that M(s, 7, wg) and
M (s, m}, wg) are holomorphic for Re(s) > 0.

Recall (See [Sh3, (2.7)])

Lg(is,m,r;)
Ls(1+1is,m,1;)

Qugs fu ® ®uESA(Sa Ty wO)fua

(12.2) M(s,m,wo)f = H

where S is a finite set of places including archimedean places such that v € S and
Ty is unramified for u ¢ S, and f = ®,f, is such that for each u ¢ S, f, is the
unique K,-fixed function normalized by f,(e,) = 1 and f, is the K,-fixed function
in the space of I(—s,wq(m,)), normalized in the same way.

Now by induction, we show that for all 4, Lg(s, 7, ;) is holomorphic for Re(s) >
2, and has no zeros for Re(s) > 1. For each u € S, A(s, my, wo) is not a zero opera-

tor. Since M (s, T, wp) is holomorphic for Re(s) > 0, the quotient []:~, %

is holomorphic for Re(s) > 0. Now starting at Re(s) > Ny, where [}~ Ls(is, 7, ;)
is absolutely convergent, and arguing inductively, we can see that [ [}~ , Ls(is, 7, ;)
is holomorphic for Re(s) > 0.

Next, recall from Corollary 9.5 that [])~, Ls(1+4s, 7, ;) has no zeros for Re(s) >
0.

Now we apply the induction on m: First, let m = 1. It is clear. Suppose our
assertion is true for Lg(s, 7, 7;), i = 2,...,m, i.e., for all 2 < i < m, Lg(s,m,r;) is
holomorphic for Re(s) > %, and has no zeros for Re(s) > 1. Since []\~, Ls(is, 7, ;)
is holomorphic for Re(s) > 0, Ls(s,m,r1) is holomorphic for Re(s) > 1. Since



3

[T;~, Ls(1 + is,m,7;) has no zeros for Re(s) > 0, Lg(s,m,r1) has no zeros for
Re(s) > 1. This finishes the induction step.

Applying the induction again on m, this time for the local L-functions, we can
assume that L(s,m,,7;), i = 2,...,m, is holomorphic for Re(s) > 1. Now we
normalize A(s, m,,wp) as in (12.1). Since for each u € S, u # v, A(s, 7y, wp) is not
a zero operator, pick f,, u € S, u # v, so that A(s,my,wo)fy, # 0. Then (12.2) is
written as

m
Lg(is,m,r;) iS, Ty, ;) 3
M
(S?T’U)()f HLS 1+’LS7T’I"L HL(1+713 7""077'7,) ®U¢Sfu®
N (s, my,w
QueS,uztv A(8, Ty, wo) fu ® Hm E(S 7: TO)w )
i=1 vy 1y YU

Now pick Ny > 1 so large that L(1 + s, m,, 1) has no poles for Re(s) > Ny. If
Re(s) > Ny — 1, the left hand side is holomorphic and each term on the right hand
side except possibly N (s, m,,wp) is not zero there. Hence the normalized operator
N (s, my, wp) is holomorphic for Re(s) > Ny — 1. By Lemma 12.6, N(s,m,, wp)
is non-vanishing for Re(s) > Ny — 1 (Apply it by identifying N (s, m,, wo) with
N (A, 7o, wp)). Hence L(s, m,,r1) has no poles for Re(s) > Ny — 1. Arguing induc-
tively, we see that L(s, m,, 1) has no poles for Re(s) > 1. O

The above proposition has a very important application when applied to Eg — 2
case. Let m = ®,m, be a cuspidal representation of GLy(A). Let diag(ay, By) is the
Satake parameter for an unramified m,. Let m; = Sym3(7) ® w, !, constructed in
[Ki-Sh], and my = Sym®*(r), constructed in [Ki5]. Then we obtain the L-function
L(s,m ®ma, pa®@A%ps) in Eg —2 case. Let S be a finite set of places of finite places
such that 7, is unramified for v ¢ S, v < co. By standard calculation, we have

Ls(s,m ® w2, pa ® AN’ps) = Ls(s, m, Sym®)

Ls(s,m, Sym” ® wy)Ls(s,m, Sym® ® w2)2Ls(s, Sym?(r) @ w2)?Ls(s, 7 @ wi).
This immediately implies meromorphic continuation and the functional equation of
the 9th symmetric power L-functions. Now Proposition 12.7 implies that for each

v, L(8,T1y @ Ty, pa ® A?ps) is holomorphic for Re(s) > 1, and so is L(s, 7y, Sym?).
Therefore we have

Corollary 12.8. Let 7 = ®,m, be a cuspidal representation of GLs(A). Let m,
be a local (finite or infinite) spherical component, given by 7, = Ind(| [51* ® | [52v).
Then

1
|Re(siy)] < 9
If F =Q, v = o0, this means

1 7
A1=—(1- — =~ 0.238,
1= 405>
where s = 2s1,, = —2s9, and A\ is the first eigenvalue of the Laplace operator on

the corresponding hyperbolic space.
We apply Proposition 12.7 to G,, = Sp(2n), SO(2n + 1), SO(2n).
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Proposition 12.9. Let 7 = ®,7, be a generic cuspidal representation of G, (A).
Let 7, be a non-tempered component and write

7o = Ind |det|P' 11 @ - - - @ |det|PE Ty, @ o,

(This is the standard module conjecture, proved by Muié¢ [Mu3]|) where T, ..., T
are discrete series representations of GL,,,(F,) and Ty is a generic tempered repre-
sentation of G, (F,), and 0 < B < --- < (1. Then 3y < 1.

We need a lemma.

Lemma 12.10 (Rogawski [Ro]). Let o1, ...,0x be discrete series representations
of GL,(F,,). Then there exists a cuspidal representation m = Q,m, such that
Ty, = 0; for each i.

Proof of Proposition 12.9. Let 0 = ®,0, be a cuspidal represenation of GL,, (A)
such that o, ~ 7;. Then by Proposition 12.7, L(s,o, X 7,) is holomorphic for
Re(s) > 1.

Note that

I(s,0, ®7,) = Ind|det|*7; ® |det|’ 71 @ - - - ® |det|PF 1, @ 7.

Hence

k k
L(S,O’U XTU) = L(S—,Bl,ij XT1)L(S,7~'1 XT()) HL(S—ﬁi,ij XTZ’) HL(S+,8i,7~'1X7ti).

=1 =1
Here L(s — f1,71 X 71) has a pole at s = (3;. Therefore 8; < 1. O

We have

Theorem 12.11. Conjecture 12.1 holds except possibly for the following 10 cases;
(xzz) (Eg C Er), Es —4 and (zxxii) (E7r C Eg) (These 3 cases are where standard
module conjecture is not available); (zviii) (Bs C Fy), (zzii) (C3 C Fy), (zxiv)
(Ds C Eg), E7 — 3, (zzvi) (D¢ C E7), Es — 3, and (xzviii) (D7 C Eg) (These 7
cases are where the Levi subgroup contains a group of type Bz, Cs, D, ).

By Proposition 12.3, we only have to show for non-tempered 7,. Using standard
module conjecture, we denote

I(s,my) = I(sa+ Ay, 00) C I(sa+ Ag,ay),

where o), is a generic tempered representation and o, is a generic discrete series. In
what follows, we can assume that s is real. All we need to do is that for % <s <1,
rank-one normalized operators are holomorphic. We can see by checking case by
case that in the cases under consideration, rank-one operators for the exceptional
4 cases which were excluded in Theorem 11.14 do not appear. By identifying roots
of G with respect to a parabolic subgroup, with those of G with respect to the
maximal torus, it is enough to check (s& + Ag, 8Y) > —1 if the rank-one operators



are for those of GLy X GL; C GLg4;. If there are rank-one operators for other
situation, we need to check (s + Ag, 3Y) > —ﬁ. We check case by case.

We illustrate the proof in the case of GLg x SO941 C SO2,+1. Let 0,7 be
generic, non-tempered, unitary representations of GLg(F'), SOq+1(F), resp. where
F is alocal field. Recall the classification of unitary representations of GL,,(F) due
to Tadic [Ta]: A generic, unitary representation o is of the form

o = Ind|det|" o1 @ -+ - ® |det|"?0p ® Tp11 @ |det| "0y @ -+ @ |det| T o,

where 0 <7, < --- <711 < % and 04, ...,0p,0,41 are tempered representations of
GL,,(F). By Proposition 12.9,

7= Ind|det|'r, @ - - - ® |det|Pa 7, ® 70,

where 71, ...7, are tempered representations of G Ly, (F), 19 is a generic tempered
representation of SOg,41(F'), and 0 < B; < --- < 1 < 1. Then

I(s,0 ®7) = Ind|det|*c @ T = Ind |det|* 01 ® -+ - ® |det|* TP 0, ® |det|*0p11®
|det|* 70, ®@ - @ |det| oy @ |det|Prr ® -+ - @ |det|PaT, @ To.

Here N(s,0 ® T,wp) is a product of rank-one normalized operators N(s + r; £
Bj,0; ® 1) and N(s = r;,0; ® 79). Bach of the operators are holomorphic and
non-vanishing by Proposition 12.3 and 12.4, since Re(s —r; — 1) > —1 (the worse

case) if Re(s) > 1.

12.4 Application to reducibility criterion. Recall the following.

Theorem 12.12. Let F' be p-adic. Suppose m is a unitary supercuspidal represen-
tation of M((F) such that wo(m) ~ w. Then there exists a nonnegative number s
such that I(s,n) is reducible at s = +sg, and irreducible everywhere else.
If w is generic, then so € {0,1,1}.

Theorem 12.13. Let 7 be a generic discrete series representation of M((F). Then
I(s, ) is irreducible at s = 0 if and only if there exists a unique i, 1 < i < m such
that L(s,m,r;) has a pole at s = 0. The pole is simple, i.e, [~ L(is,w,r;) has a
simple pole at s = 0.

Theorem 12.14. Let w be a generic tempered representation of M(F') such that
the standard module conjecture is true, namely, if J(s, ) is generic, then J(s,7) =
I(s,m) for Re(s) > 0. Then for Re(s) > 0, I(s,n) is irreducible if and only if
-, L(1 —4s,m,r;)" L #0.

13. Holomorphy and bounded in vertical strips.

13.1 Holomorphy of L-functions. We prove



Proposition 13.1. Let m = ®,m, be a unitary, generic cuspidal representation of
M(A). Assume Conjecture 12.1. Then there exists a gréssencharacter x such that
for all i, L(s,m™ ® x, ;) is entire, and L(s,m™ ® x,r;) has no zeros for Re(s) > 1.

Proof. Fix a place w where 7, is spherical. By checking the L-functions in section
6 (or use [Ki-Sh, Proposition 2.1]), we can take a grossencharacter x (by Grunwald-
Wang theorem) such that

(1) X is highly ramified;

(2) wo(r ®x) #7® X;

(3) wi(mi @ x) # m @ x for all ¢, where 7} is as in Theorem 7.1, namely,

L(s,m,r;) = L(s,m,r]), and w{ is the Weyl group element for =;.

Then M(s,m ® x,wp) and M(s,m, @ x,w;) are holomorphic for Re(s) > 0
by Corollary 5.5. Hence by omitting x, we can assume that M(s, 7, wg) and
M (s, ), w()) are holomorphic for Re(s) > 0. Then

M(s,m,w ﬁ L(is,m,r;)
T, =
0)f L(1 +is,m,7;)e(is, m, ;)

02y N(S, Ty, wO)f’U-

By assumption, N (s, m,, wp) is holomorphic and non-zero for Re(s) > % Then

m
H L(is,m,r;)
Pl L(1+is,m,7;)

is holomorphic for Re(s) > 5. Now starting at Re(s) > No, where [[;, L(is, 7, ;)
is absolutely convergent, and arguing inductively, we can see that Hgl L(is,m,r;)
is holomorphic for Re(s) > 1.

By Corollary 9.5, []i~, L(1 + is, m,r;) has no zeros for Re(s) > 0. (This follows
from the fact that the local L-functions L(s, 7, ;) has no zeros at all.)

Now we use the induction on m: If m = 1, it is clear. Suppose it is true for
m' < m. The induction hypothesis is that for all ¢ > 2, L(s, 7, ;) is holomorphic for
Re(s) > 1 and has no zeros for Re(s) > 1. Then clearly, L(s, r,r1) is holomorphic
for Re(s) > % and has no zeros for Re(s) > 1. By the functional equation, L(s, 7, ;)

2
is entire. [

13.2 Boundedness in vertical strips of L-functions.

In writing this section, I benefited from the conversation with M. McKee. In
order to apply the converse theorem of Cogdell and Piatetski-Shapiro, it is necessary
to establish the boundedness in vertical strips of automorphic L-functions. In this
section, we summarize the result of Gelbart and Shahidi [Ge-Sh].

Note that ((s) is not bounded in vertical strips. This follows from

Proposition 13.2. If f(s) = o an > 0 and ) 22 is divergent, then f(s)

n=1 nS ) n°o
is not bounded in the region o > oy, and |t| > to > 0, where s = o + it.

But the completed L-function £(s) = s(1—s)m~3(£){(s) is bounded in vertical
strips. The reason is that the I-function controls the growth of {(s) as t — oc.



Lemma 13.3. limy_,o [['(0 + it)|e>™!|t|37 = \/27. Hence
ID(c +it)] ~ V2me 2™ |t)7=3 |t] - oo.
We obtain the boundedness in vertical strips by using the following theorem.

Phragmen-Lindel6f theorem. Let f(s) be holomorphic in a half-strip, s = o+it,
a<o<b,t>ty>0 with fixed a,b, .
Suppose that for some o > 1, we have the crude bound

flo+it) = 0("), t>t,

(This means that there exists a constant K such that |f(o + it)| < Ket"; we call
such f function of finite order in the half-strip.) and on the sides of the half-strip
we have the better bound

fla+it) =0@tM), f(b+it)=0M), t>to.

Then f(o + it) = O(t™) on the half-strip. In particular, if f is bounded on the
sides of the half-strip, then f is bounded on the half-strip.

The following theorem is quite useful.

Theorem 13.4. Let f(s) be holomorphic in a half-strip, s = o +it, a < o < b,
with fixed a,b. Suppose that f is of finite order and

fla+it) =O0(t["), fb+it) =O([t[*),

Then f(o +it) = O(|t|*(®)) uniformly for a < o < b, k(o) being the linear function
of o which takes the values k1, ks for o = a,b.

Given € > 0, ((1 + § +4t) = O(1). By the functional equation, ((1 — s) =

w%—s% = O(|t]3F%) if s = 14 £ +it. Hence (1 +it) = O([t|i+¢). We call this
2

convexity bound. If we assume Riemann hypothesis, we would have ¢ (% +it) =
O(|t|¢) for every e > 0.

Assume that L(s, 7, r;) is entire, namely M (s, ) is holomorphic for Re(s) > 0.
In order to apply Phragmen-Lindel6f theorem to L(s,w,r;), we take a vertical
strip, a < Re(s) < b such that L(s,m,r;) is absolutely convergent for Re(s) = b,
and hence L(s, m,r;) is bounded on Re(s) = b, and also by the functional equation,
on Re(s) = a. If we can prove that L(s,m,r;) is of finite order, we can apply
Phragmen-Lindel6f theorem. The starting point is the following proposition.

Proposition 13.5 (Harish-Chandra). (M(s,n)f, f') is a function of finite order
for Re(s) > 0.

Proof. This is Lemma 38 of [HC]. O

Consider

m

M(s,ﬂ',wo)f:H

=1

L(isa T, 7"7;)
L(1 +is,m,7;)e(is, m,7;)

® N(S; Ty, wO)fv-
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Proposition 13.6. (1) If v|oco, (N (s, 7y, wo) fu, fi) is a rational function of s.
(2) If v < o0, (N (s, 7y, wo) fu, fl) is a rational function of ¢ *.
(3) N(s,my, wp) = id for almost all v.

We need the following theorem from complex analysis. (See [Ge-Sh, Theorem
5.7])

Theorem 13.7. Let f(z), h(z) be analytic functions of finite order in the half-plane
x>0,z=x+1y. Let g(z) = ,’:gg

(1) Assume g(z) is analytic for z > 0 (for example, h(z) has no zeros for z > 0).
Then g is of finite order for z > 0.

(2) Suppose further that g(z) is entire and there exists « € R, C' > 0 such that
lg(—z +iy)| = Ce**|g(x + iy)| for any x > 0. Then g is of finite order.

®UN(377"11 7w0)fv
6(7:87’"-77‘1')

3. Therefore, by Theorem 13.7 (1), [T", % is a function of finite order for

Re(s) > 1. Now starting at Re(s) = No >> 0, where [[;~, L(is, 7, r;) is absolutely
convergent so that it is bounded, and moving to the left, we obtain

Hence is a function of finite order and non-vanishing for Re(s) >

Proposition 13.8. [[!, L(is,n,r;) is a function of finite order for Re(s) > %

Use induction on m. If m = 1, it is clear from the above proposition and by the
functional equation, L(s,m,r1) is of finite order for all of C. Now if we have the
following conjecture, we conclude that L(s,m,71) is of finite order for Re(s) > 3,
and by the functional equation, we are done.

Conjecture. L(s,m,r;)~" is of finite order for Re(s) > 1.

Since we cannot prove the conjecture, we need to use Theorem 13.7 (2). Induc-
tion hypothesis is: For all i > 2, L(s,m,r;) is of finite order for Re(s) > % Then
L(s,m, 1) is a ratio of two analytic functions of finite order for Re(s) > 3. Now we
apply Theorem 13.8 (2) with g(2) = L(z + 3, m,71). By the functional equation,
L(s,m,m) = ¢€(s,m,71)L(1 — s,m,71). Here (s, m,71) = Ce**. Hence

1 - 1 — -
L(E - Z77T7T1) = L(§ _Z77T7T1) :g(—Z) :g(_$+7’y)

Therefore, |g(—z + iy)| = Ce*®|g(x + iy)|. So L(s,n,r1) is of finite order for all of
C.

So we have obtained

Theorem 13.9 (Gelbart-Shahidi [Ge-Sh]). Suppose L(s,w,r;) is entire. Then
it is bounded in vertical strips.



