11. Local L-functions and functional equations.

In this section, we summarize the main results in [Sh1]. Recall the definition of local coefficients: Let $I(\nu, \sigma)$ be the induced representation. Then

$$\lambda_{\psi}(\nu,\sigma) = C_{\psi}(\nu,\sigma,w)\lambda_{\psi}(w\nu,w\sigma)A(\nu,\sigma,w).$$

We know that $\lambda_{\psi}(\nu, \sigma)$ is entire and non-vanishing. Hence

Proposition 11.1. $C_{\psi}(\nu, \sigma, w) A(\nu, \sigma, w)$ has no zeros.

Recall the cocycle relation for the intertwining operator: Let $w = w_n \cdots w_1$, and

$$A(\nu, \sigma, \theta, w) = A(w_{n-1} \cdots w_1 \nu, w_{n-1} \cdots w_1 \sigma, \theta_n, w_n) \cdots A(\nu, \sigma, \theta, w_1).$$

Each of the factors is a rank-one operator, where $\theta_{i+1} = w_i \theta_i$, $\Omega_i = \theta_i \cup \{\alpha_i\}$, $w_i(\theta_i) \subset \Omega_i$, $w_i(\alpha_i) < 0$.

Proposition 11.2. $C_{\psi}(\nu, \sigma, \theta, w) = C_{\psi}(w_{n-1} \cdots w_1 \nu, w_{n-1} \cdots w_1 \sigma, \theta_n, w_n) \cdots C_{\psi}(\nu, \sigma, \theta, w_1).$

Suppose $\mathbf{P} = \mathbf{M}\mathbf{N}$ is a maximal parabolic subgroup and σ is a representation of $\mathbf{M}(F)$.

Proposition 11.3 (Shahidi). Suppose F is archimedean or σ is spherical, and $\phi: W_F \times SL_2(\mathbb{C}) \longrightarrow {}^LM$ is the parametrization of π . Then

$$C_{\psi}(s, \sigma, w_0) = \prod_{i=1}^{m} \gamma(is, r_i \circ \phi, \psi).$$

Hence if we set $\gamma(s, \sigma, r_i, \psi) = \gamma(s, r_i \circ \phi, \psi)$, and $L(s, \sigma, r_i) = L(s, r_i \circ \phi)$ and $\epsilon(s, \sigma, r_i, \psi) = \epsilon(s, r_i \circ \phi, \psi)$, then

$$C_{\psi}(s,\sigma,w_0) = \prod_{i=1}^{m} \gamma(is,\sigma,r_i,\psi), \quad \gamma(s,\sigma,r_i,\psi) = \epsilon(s,\sigma,r_i,\psi) \frac{L(1-s,\sigma,\tilde{r}_i)}{L(s,\sigma,r_i)}.$$

The Artin γ -factor satisfies $\gamma(s, \sigma, r_i, \psi)\gamma(1 - s, \sigma, \tilde{r}_i, \bar{\psi}) = 1$.

Proof. We only remark on the last equality. By the definition of γ -factors, we only need to verify $\epsilon(s, \sigma, r_i, \psi) \epsilon(1 - s, \sigma, \tilde{r}_i, \bar{\psi}) = 1$. This is the identity (3.4.7) in [Ta].

Let $\mathbf{P}_1 \subset \mathbf{P}$, and $\mathbf{Q} = \mathbf{M} \cap \mathbf{P}_1$. Let σ be a representation of $\mathbf{M}(F)$ such that $\sigma \hookrightarrow Ind_O^M \rho \otimes exp(\langle \Lambda_0, H_Q(\cdot) \rangle)$. Then

$$I(s,\sigma) \hookrightarrow Ind_{P_1}^G \rho \otimes exp(\langle s\tilde{\alpha} + \Lambda_0, H_{P_1}() \rangle).$$

Let $A(s\tilde{\alpha} + \Lambda_0, w_0)$ be the intertwining operator for the induced representation $Ind_{P_1}^G \rho \otimes exp(\langle s\tilde{\alpha} + \Lambda_0, H_{P_1}() \rangle)$. Then

$$A(s, \sigma, w_0) = A(s\tilde{\alpha} + \Lambda_0, \rho, w_0)|_{I(s,\sigma)}.$$

So $C_{\psi}(s, \sigma, w_0) = C_{\psi}(s\tilde{\alpha} + \Lambda_0, \rho, w_0)$. Since $\sigma \hookrightarrow Ind_Q^M \rho \otimes exp(\langle \Lambda_0, H_Q() \rangle)$ for ρ supercuspidal, we first calculate $C_{\psi}(s, \rho, w_0)$ for ρ supercuspidal.

Recall first the following two propositions.

Proposition 11.4 (Shahidi). Suppose F is a p-adic field and ρ is ψ -generic supercuspidal representation of $\mathbf{M}(F)$. There exists a number field k such that $k_v = F$ and a globally generic cuspidal representation π of $\mathbf{M}(\mathbb{A})$ such that $\pi_v = \rho$ and π_w is spherical for all $w \neq v$, $w < \infty$.

Proposition 11.5 (Shahidi). For each $i \geq 2$, there exists a split reductive group \mathbf{G}_i and a maximal parabolic subgroup $\mathbf{P}_i = \mathbf{M}_i \mathbf{N}_i$ and a cuspidal representation π' of $\mathbf{M}_i(\mathbb{A})$ such that $L_S(s, \pi, r_i) = L_S(s, \pi', r_1')$, where $r' = \bigoplus_{j=1}^{m'} r_j'$, m' < m. If π_v is spherical, we can take π'_v to be spherical.

Theorem 11.6 (Shahidi). Suppose F is a p-adic field and ρ is ψ -generic supercuspidal representation of $\mathbf{M}(F)$. Then there exists a unique m complex functions $\gamma(s, \rho, r_i, \psi)$ such that

$$C_{\psi}(s, \rho, w_0) = \prod_{i=1}^{m} \gamma(is, \rho, r_i, \psi).$$

It satisfies $\gamma(s, \rho, r_i, \psi)\gamma(1 - s, \rho, \tilde{r}_i, \bar{\psi}) = 1$.

Remark. If $\phi: W_F \longrightarrow {}^L M$ is the parametrization of ρ , then it is expected that $\gamma(s, \rho, r_i, \psi) = \gamma(s, r_i \circ \phi, \psi)$. But it is not proved yet, except for a few cases.

Proof. First, we prove the existence. Use induction on m. If m=1, it is clear. Suppose the proposition is true for m' < m. By Proposition 11.4, there exists a number field k such that $k_v = F$ and a globally generic cuspidal representation π of $\mathbf{M}(\mathbb{A})$ such that $\pi_v = \rho$ and π_w is spherical for all $w \neq v$, $w < \infty$. By Proposition 11.5, for $i \geq 2$, there exists a split reductive group \mathbf{G}_i and a maximal parabolic subgroup $\mathbf{P}_i = \mathbf{M}_i \mathbf{N}_i$ and a cuspidal representation π' of $\mathbf{M}_i(\mathbb{A})$ such that $L_S(s,\pi,r_i) = L_S(s,\pi',r_1')$, where $r' = \bigoplus_{j=1}^{m'} r_j'$, m' < m, and $S = \{v\}$. Now we define $\gamma(s,\rho,r_i,\psi) = \gamma(s,\pi'_v,r_1',\psi)$. Then we define

$$\gamma(s, \rho, r_1, \psi) = C_{\psi}(s, \rho, w_0) \prod_{i=2}^{m} \gamma(is, \rho, r_i, \psi)^{-1}.$$

Next, we prove the uniqueness. Recall the crude functional equation

$$\prod_{i=1}^{m} L_S(is, \pi, r_i) = \prod_{v \in S} C_{\psi_v}(s\tilde{\alpha}, \pi_v, w_0) \prod_{i=1}^{m} L_S(1 - is, \pi, \tilde{r}_i).$$

By induction on i as in Theorem 7.4, we obtain the functional equation

$$L_S(s, \pi, r_i) = \prod_{w \in S} \gamma(s, \pi_w, r_i, \psi_v) L_S(1 - s, \pi, \tilde{r}_i).$$

Then

$$\gamma(s, \rho, r_i, \psi_v) = \frac{L_S(s, \pi, r_i)}{L_S(1 - s, \pi, \tilde{r}_i)} \prod_{w \in S} \gamma(s, \pi_w, r_i, \psi_w).$$

By Proposition 11.3, $\gamma(s, \pi_w, r_i, \psi_w)$, $w \in S, w \neq v$, are Artin factors attached to π_w, r_i , and hence uniquely determined. The partial *L*-function is uniquely determined. Hence $\gamma(s, \rho, r_i, \psi_v)$ is uniquely determined by ρ, r_i .

We apply the functional equation twice, and obtain

$$L_S(s,\pi,r_i) = \prod_{w \in S} \gamma(s,\pi_w,r_i,\psi_v) L_S(1-s,\pi,\tilde{r}_i) = \prod_{w \in S} \gamma(s,\pi_w,r_i,\psi_v) \gamma(1-s,\pi_w,\tilde{r}_i,\bar{\psi}_v) L_S(s,\pi,r_i).$$

Hence
$$\prod_{w \in S} \gamma(s, \pi_w, r_i, \psi_v) \gamma(1 - s, \pi_w, \tilde{r}_i, \bar{\psi}_v) = 1$$
. If $w \neq v$, by Proposition 11.3, $\gamma(s, \pi_w, r_i, \psi_v) \gamma(1 - s, \pi_w, \tilde{r}_i, \bar{\psi}_v) = 1$. Therefore, $\gamma(s, \rho, r_i, \psi) \gamma(1 - s, \rho, \tilde{r}_i, \bar{\psi}) = 1$.

For a general σ , let $\sigma \hookrightarrow Ind_Q^M \rho \otimes exp(\langle \Lambda_0, H_Q() \rangle)$ for ρ supercuspidal. Then $C_{\psi}(s,\sigma,w_0) = C_{\psi}(s\tilde{\alpha} + \Lambda_0,\rho,w_0)$ which is a product of rank-one C_{ψ} 's attached to supercuspidal representations by Proposition 11.2. Each rank-one C_{ψ} 's is a product of γ -factors by Theorem 11.6. Now we define $\gamma(is,\sigma,r_i,\psi)$ to be the product of the γ -factors with coefficients is. For example, let σ be the unique subrepresentation of $Ind |det|^{\frac{1}{2}}\rho \otimes |det|^{-\frac{1}{2}}\rho$, where ρ is a supercuspidal representation of $GL_2(F)$. Consider σ to be a representation of $GL_4(F) \subset Sp_8(F)$. Then $C_{\psi}(s,\sigma,w_0) = C_{\psi}(s-\frac{1}{2},\rho)C_{\psi}(2s,\rho\otimes\rho)C_{\psi}(s+\frac{1}{2},\rho)$, where $C_{\psi}(s,\rho)$ is the local coefficient for $GL_2(F) \subset Sp_4(F)$, and $C_{\psi}(s,\rho\otimes\rho)$ is for $GL_2 \times GL_2 \subset GL_4$. Here $C_{\psi}(s,\rho) = \gamma(s,\rho)\gamma(2s,\omega_{\rho})$, where ω_{ρ} is the central character of ρ . Hence we define

$$\gamma(s,\sigma,r_1,\psi) = \gamma(s-\frac{1}{2},\rho)\gamma(s+\frac{1}{2},\rho), \quad \gamma(2s,\sigma,r_2,\psi) = \gamma(2s,\rho\otimes\rho)\gamma(2s-1,\omega_\rho)\gamma(2s+1,\omega_\rho).$$

We prove

Theorem 11.7 (properties of γ **-functions).** Let σ be an irreducible admissible generic representation of $\mathbf{M}(F)$. Then there exists an m complex functions $\gamma(s, \sigma, r_i, \psi)$ such that

- (1) $C_{\psi}(s, \sigma, w_0) = \prod_{i=1}^{m} \gamma(is, \sigma, r_i, \psi)$
- (2) $\gamma(s,\sigma,r_i,\psi)\gamma(1-s,\sigma,\tilde{r}_i,\bar{\psi})=1$, for each i=1,...,m
- (3) (functional equation) Let $\pi = \bigotimes_v \pi_v$ be a generic cuspidal representation. Let S be a finite set of places such that for $v \notin S$, π_v , ψ_v are unramified. Then

$$L_S(s, \pi, r_i) = \prod_{v \in S} \gamma(s, \pi_v, r_i, \psi_v) L_S(1 - s, \pi, \tilde{r}_i).$$

(4) (Multiplicativity of γ -factors) Suppose $\sigma \subset Ind_{M_{\theta}N_{\theta}}^{M} \sigma_{1} \otimes 1$, where σ_{1} is an irreducible admissible representation of M_{θ} . Let $\theta' = w(\theta) \subset \Delta$ and fix a reduced decomposition $w = w_{n} \cdots w_{1}$. For each j, there exists a unique root $\alpha_{j} \in \Delta$ such that $w_{j}(\alpha_{j}) < 0$. Let $\Omega_{j} = \theta_{j} \cup \{\alpha_{j}\}$. The group $M_{\Omega_{j}}$ contains $M_{\theta_{j}}N_{\theta_{j}}$ as a maximal parabolic subgroup, and $w_{j-1}\cdots w_{1}\sigma_{1}$ is a representation of $M_{\theta_{j}}$. The L-group L M_{θ} acts on V_{i} . Given an irreducible constituent of this action, there exists a unique j, $1 \leq j \leq n$ which under $w_{j-1} \cdots w_{1}$ is equivalent to an irreducible constituent of the action of L $M_{\theta_{j}}$

on the Lie algebra of ${}^LN_{\theta_j}$. We denote by i(j) the index of this subspace of the Lie algebra of ${}^LN_{\theta_j}$. Finally, let S_i denote the set of all such j's where S_i is a proper subset of $1 \le j \le n$. Then

(11.1)
$$\gamma(s, \sigma, r_i, \psi) = \prod_{j \in S_i} \gamma(s, w_{j-1} \cdots w_1(\sigma_1), r_{i(j)}, \psi)$$

Proof. (1) and (3) follow from the definition of γ -factors and the induction on m. (2) follows from (4) and the supercuspidal case (Theorem 11.6). Now we prove the multiplicativity of γ -factors. If σ_1 is a supercuspidal representation, it is a cosenquence of the definition. Suppose σ_1 is arbitrary. Then $\sigma_1 \hookrightarrow Ind_Q^{M_\theta} \rho \otimes exp(\langle \Lambda_0, H_Q() \rangle)$ for ρ supercuspidal. Then $\sigma \subset Ind_Q^{M_\theta} \rho \otimes 1$. So $\gamma(s, \sigma, r_i, \psi)$ is a product of γ -factors attached to ρ . A similar statement is true for the right hand side of (11.1). Hence by the uniqueness of γ -factors, we have (11.1). \square

Example 11.8. Suppose σ is the Steinberg representation given as the unique sub-representation of

$$Ind |det|^{\frac{p-1}{2}} \rho \otimes |det|^{\frac{p-1}{2}-1} \rho \otimes \cdots \otimes |det|^{-\frac{p-1}{2}} \rho,$$

where ρ is a supercuspidal representation of GL_k . Then

$$I(s,\sigma\otimes\tilde{\rho})\subset Ind\,|det|^{\frac{s}{2}+\frac{p-1}{2}}\rho\otimes|det|^{\frac{s}{2}+\frac{p-1}{2}-1}\rho\otimes\cdots\otimes|det|^{\frac{s}{2}-\frac{p-1}{2}}\rho\otimes|det|^{-\frac{s}{2}}\tilde{\rho}.$$

By multiplicativity of γ -factors,

$$\gamma(s, \sigma \times \tilde{\rho}, \psi) = \prod_{i=0}^{p-1} \gamma(s + \frac{p-1}{2} - i, \rho \times \tilde{\rho}, \psi).$$

Lemma 11.9. Let π be an admissible representation of M(F), F, p-adic. Let $\lambda_{\psi}(s,\pi)$ be the Whittaker functional for $I(s,\pi)$. Then for every $f \in I(s,\pi)$, $\lambda_{\psi}(s,\pi)(f)$ is a polynomial in q^s and q^{-s} .

Proof. It is proved in [Sh8, Lemma 2.2] for the case of $GL_n \times GL_m \subset GL_{n+m}$. But in light of the result in [Ca-Sh, Lemma 2.2] the proof is general. \square

Lemma 11.10. Let π, F be as above. Let $A(s, \pi, w_0)$ be the intertwining operator for $I(s, \pi)$. Then for every $f \in I(s, \pi)$ and $g \in G(F)$, $A(s, \pi, w_0)f(g)$ is a rational function of q^{-s} .

Proof. It is proved in [Sh8, Lemma 2.3] for the case of $GL_n \times GL_m \subset GL_{n+m}$. But in light of the result in [Si, Lemma 1.4, 1.5], the proof is general. \square

Theorem 11.11. $\gamma(s, \pi, r_i, \psi)$ is a rational function of q^{-s} .

Proof. By the definition of local coefficients, $C_{\psi}(s, \pi, w_0)$ is a rational function of q^{-s} . Hence by induction, $\gamma(s, \pi, r_i, \psi)$ is a rational function of q^{-s} . \square

11.1 Definition of local *L*-functions.

11.1.1 σ is tempered, generic. We defined $\gamma(s, \sigma, r_i, \psi)$ as a rational function of q^{-s} . Let $P_{\sigma,i}(t)$ be the unique polynomial satisfying $P_{\sigma,i}(0) = 1$ such that $P_{\sigma,i}(q^{-s})$ is the numerator of $\gamma(s, \sigma, r_i, \psi)$. Define

$$L(s, \sigma, r_i) = P_{\sigma,i}(q^{-s})^{-1}, \quad L(s, \sigma, \tilde{r}_i) = P_{\tilde{\sigma},i}(q^{-s})^{-1}.$$

Since $\gamma(s, \sigma, r_i, \psi)\gamma(1 - s, \sigma, \tilde{r}_i, \bar{\psi}) = 1$,

$$\gamma(s, \sigma, r_i, \psi) \frac{L(s, \sigma, r_i)}{L(1 - s, \sigma, \tilde{r}_i)},$$

is a monomial in q^{-s} , which we denote by $\epsilon(s, \sigma, r_i, \psi)$. Hence

$$\gamma(s, \sigma, r_i, \psi) = \epsilon(s, \sigma, r_i, \psi) \frac{L(1 - s, \sigma, \tilde{r}_i)}{L(s, \sigma, r_i)}.$$

Example 11.12. Consider Example 11.9. In that case, $L(s, \sigma \times \tilde{\rho}) = L(s + \frac{p-1}{2}, \rho \times \tilde{\rho})$. Notice a lot of cancellations in the γ -factors. Also $L(1-s, \tilde{\sigma} \times \rho) = L(1-s + \frac{p-1}{2}, \rho \times \tilde{\rho})$.

Conjecture 11.13 (Shahidi). Let σ be tempered, generic. Then $L(s, \sigma, r_i)$ is holomorphic for Re(s) > 0.

Theorem 11.14. The above conjecture is true except for 4 cases; $E_7 - 3$, $E_8 - 3$, $E_8 - 4$ and $(xxviii)(D_7 \subset E_8)$. (These 4 cases have the Levi subgroups of type D_n or E_6 .)

11.1.2 σ non-tempered, generic. By Langlands' classification, we can write

$$\sigma \hookrightarrow Ind_Q^M \rho \otimes exp(\langle \Lambda_0, H_Q() \rangle),$$

where ρ is generic, tempered. Then

$$I(s,\sigma) \hookrightarrow Ind_{P_1}^G \rho \otimes exp(\langle s\tilde{\alpha} + \Lambda_0, H_{P_1}() \rangle).$$

By multiplicativity of γ -factors, $\gamma(s, \sigma, r_i, \psi)$ is a product of rank-one γ -factors for ρ . Define $L(s, \sigma, r_i)$ to be the product of rank-one L-functions for each γ -factors. We then define $\epsilon(s, \sigma, r_i, \psi)$ to satisfy $\gamma(s, \sigma, r_i, \psi) = \epsilon(s, \sigma, r_i, \psi) \frac{L(1-s, \sigma, \tilde{r}_i)}{L(s, \sigma, r_i)}$.

Example 11.15. Suppose $\sigma = \mu \circ det$ is a representation of $GL_2(F)$, where μ is an unramified character. It is a subrepresentation of $Ind \mu | |^{-\frac{1}{2}} \otimes \mu | |^{\frac{1}{2}}$. Then

$$I(s,\sigma) = \operatorname{Ind} \pi |\det|^{\frac{s}{2}} \otimes |\cdot|^{-\frac{s}{2}} \hookrightarrow \operatorname{Ind} \mu|\cdot|^{\frac{s}{2} - \frac{1}{2}} \otimes \mu|\cdot|^{\frac{s}{2} + \frac{1}{2}} \otimes |\cdot|^{-\frac{s}{2}}.$$

Hence $\gamma(s,\sigma,\psi)=\gamma(s+\frac{1}{2},\mu,\psi)\gamma(s-\frac{1}{2},\mu,\psi)$, and $L(s,\sigma)=L(s+\frac{1}{2},\mu)L(s-\frac{1}{2},\mu)$. On the other hand, if π is the Steinberg representation, which is the subrepresentation of $Ind \, \mu \vert \, \vert^{\frac{1}{2}} \otimes \mu \vert \, \vert^{-\frac{1}{2}}$, then $\gamma(s,\pi,\psi)=\gamma(s,\sigma,\psi)$, but $L(s,\pi)=L(s+\frac{1}{2},\mu)$.

Theorem 11.16 (the functional equations of the completed L-functions). Let $\pi = \bigotimes_v \pi_v$ be a ψ -generic cuspidal representation. Let

$$L(s, \pi, r_i) = \prod_{\text{all } v} L(s, \pi_v, r_i), \quad \epsilon(s, \pi, r_i) = \prod_{\text{all } v} \epsilon(s, \pi_v, r_i, \psi_v).$$

Then $L(s, \pi, r_i) = \epsilon(s, \pi, r_i)L(1 - s, \pi, \tilde{r}_i)$.

11.2 Properties of local L-functions; supercuspidal representations.

Suppose σ is a generic supercuspidal representation of $\mathbf{M}(F)$, F p-adic. Then

- (1) Unless **P** is self-conjugate, and $w_0(\sigma) \simeq \sigma$, $C_{\psi}(s\tilde{\alpha}, \sigma, w_0)$ never vanishes. Hence if **P** is not self-conjugate, or $w_0(\sigma) \not\simeq \sigma$, $L(s, \sigma, r_i) = 1$ for all i. Since $L(s, \sigma, r_i)$ comes from non self-conjugate cases (except for the representation r_3 of $E_8 1$ case), $L(s, \sigma, r_i) = 1$ for all $i \geq 3$. (The representation r_3 of $E_8 1$ case appears as the first L-function in $E_6 2$ case, which is not self-conjugate.)
- (2) Each $L(s, \sigma, r_i)$, i = 1, 2, is a product of the form $\prod_j (1 \alpha_j q^{-s})^{-1}$, where $\alpha_j \in \mathbb{C}$, and $|\alpha_j| = 1$.
- (3) $\frac{1}{\prod_{i=1}^m L(is,\sigma,r_i)} A(s,\sigma,w_0)$ is entire and non-zero.
- (4) The following are equivalent: (a) $A(s, \sigma, w_0)$ has a pole at s = 0; (b) either $L(s, \sigma, r_1)$ or $L(s, \sigma, r_2)$ has a pole at s = 0, only one of them has a pole; (c) $I(0, \sigma)$ is irreducible and $w_0(\sigma) \simeq \sigma$.
- (5) Suppose $I(s_0, \sigma)$ is reducible for $s_0 > 0$. Then $s_0 = \frac{1}{2}$ or 1. And $J(s, \sigma)$ is unitary for $0 \le s \le s_0$ is unitary and non-unitary for $s > s_0$. The unique subrepresentation of $I(s_0, \sigma)$ is square integrable.

Example 11.17. Let $\mathbf{G} = GL_{2n}$ and $\mathbf{M} \simeq GL_n \times GL_n$. Let σ be an irreducible generic supercuspidal representation of $GL_n(F)$. Then $L(s, \sigma \times \tilde{\sigma}) = (1 - q^{-rs})^{-1}$, where r is the order of the cyclic group $\{\eta : \sigma \otimes \eta \simeq \sigma\}$. Here $\eta^n = 1$ and r|n.