5. Eisenstein series and constant terms.

5.1 Definition of Fisenstein series. Let m be a cuspidal representation of M(A),
and P = Py = MN, where § = A — {a}. For f, € I(s,n), define the Eisenstein

series

E(s,m fog)= Y.  fi(v9)

YEP(F)\G(F)

If f = ¢exp({sa+ pp,Hp())), then we denote it by

E(s,m¢,9)= >, d(vg)exp((sd+ pp, Hp(79))).
YEP(F)\G (F)

Ezample 5.1. Let G = GL3, and P = B, the Borel subgroup. By the strong
approximation, GLy(Ag) = GL2(Q)GLS (R)K, where K = [1, Ky, where K, =
GL3(Z,) for all p, and K., = SO(2). Then GL2(Q) N GLs (R)K = SLy(Z). (If

(i 2) € K N GLy(Q), then a,b,c,d € Z, N Q for all p. Hence a,b,c,d € Z,
and det (ccz 3) = 1.) Hence GLy(Q) = SLy(Z) - B(Q). (Note that GLy(Q) C

GLI(R) - K -B(Q).) So

BQ\G(Q) ~ (SL2(Z) N B(Q))\SL2(Z).

11
Now take ¢ = 1 and g = y* ¥ _2133
0 gy 2

we see that & = pp, Hp(g) = logy and exp({s& + pp, Hp(g))) = y“¥ . Note that

>, y > 0. Then by identifying a with R,

. . mz b az
g.z:z:x-i—yzandfm(’)/Z):|C£T|27Where’)’= d ,andfyz:Tig.
Hence

s+1
o s+1 . y 2
E(s,1,9) = Z Im(yz)= = Z lcz +d|st1”
YE(SL2(QNB(Q)\SL2(Z) (c,d)ez?
gcd(e,d)=1

If we use the fact that every non-zero (m,n) € Z? can be written as a- (c, d), where
o € Zy, ged(c,d) =1, then

s+1 s+1

1 0 1 Y 2 1 Yy 2
E(s,1,g) = - A —
(5:1,9) C(s+1) O; astl ( d)ZEZ2 ez +d[st1 ((s+1) (m n)Z#O 0) [mz + n[s*+1
C’ b b

ged(c,d)=1

This is the classical Eisenstein series.
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Theorem 5.2 (Langlands; Basic properties of Eisenstein series).

(1) E(s,m, fs,g) is absolutely convergent for Re(s) > {(pp, ) = Xpp,2)

(ay2) -
(2) E(s,m, fs,g9) and M (s, m) have meromorphic continuation to all of C and
satisfies a functional equation

E(—s,wo(m), M (s,m)fs,9) = E(s,m, fs,9); M(—s,wo(m))M(s,n)=1d.

(3) E(s,m, fs,g9) and M (s, m) are holomorphic on Re(s) = 0.
(4) (adjoint formula) Suppose P is self-conjugate, and consider M (s, ) as an
intertwining operator for H. Then

(M (s, )1, p2) = (¢1, M (5, 7)p2).

Namely, M (s, m)* = M (s, ).

(5) The singularities of E(s,7,¢,9) and M(s,w) are the same. In the region
Re(s) > 0, there are only finitely many of them, all are simple and on the
interval, (0,{(pp,a)). (Here note that we normalized © so that it is trivial
on A(R);.)

(6) (M(s,m)¢1, d2) is bounded in vertical strips Te 1 = {z € C| Re(z) € I,Im(z) >
€}, where € > 0 and I is a closed positive real interval.

5.2 Constant terms. Define the constant term of F(s, m, ¢, g) along a parabolic
subgroup Q = MgNg by

Eq(s,m,¢,9) = / E(s, 7, ¢,ng) dn.

N@(F)\Ng(4)

Theorem 5.3. Unless Q = P, P/, Eqg(s,m,¢,g9) = 0. If P is self-conjugate, i.e.,
P =P/, then

Ep(s,m, ¢, 9) = ¢(g9)exp((sa + pp, Hp(9))) + M(s, m)¢(9)exp((—sa+ pp, Hp(9)))-

If P is not self-conjugate, then

Ep(s,m,¢,9) = ¢(g9)exp({sa+ pp, Hp(g))),
Epi(s,m,¢,9) = M(s,m)¢p(g)exp((—sa+ pp, Hp(g)))

Proof. Use Bruhat decomposition: Let 61,02 C A and let P; = Py, for ¢ = 1,2.
Then
G(F) = U Py (F)w™'Py(F),
weWe, \W/Wp,

where Wy, is the subgroup of W generated by {w,|a € 6;}. We use the following
three facts from Casselman:

(1) There are canonical double coset representatives in Wy, \W/Wy,. They are
given by W (61,05) = {w € W|w(a) > 0 for a € ; and w=(8) > 0 for
B € 0y}



(2) The product map induces an isomorphism

Py, x {w™'} x 11 Uy ~ Py, w™ Py, .
a€d -
wil(a)¢¢I>+—Eg'1

(3) The canonical projection induces an isomorphism

H Uy ~ (wNg,w™' N Ng,)\Ne,.

a€d; -3
wil(a)¢<1>+—23'1

Apply this to 0 = ;. Let Ny = wNw ™1 N Ny,.

Ep,, (s,m, ¢,9) = / Y. s(yng)exp((sa + pp, Hp(yng))) dn
Noa (F)\Noy (&) yep(F)\G(F)

= > 2

weEW (6,62) n' €Ny (F)\N92

/ p(w™'n'ng)exp((s@ + pp, Hp(w™'n'ng))) dn
(1) Noy (PN, ()

¢(w™ 'ng)exp((s@ + pp, Hp(w™ 'ng))) dn

WEW(G,GZ) Ll(F)\NGQ (A)

Here m —— ¢(mg) belongs to the space of w. So it is a cusp form. Note that
w1 Py, w N M is parabolic in M with unipotent radical w='Ng,w N M. Hence if
w I Ng,w N M # 1,

/ $(w"ng)exp((si + pp, Hp(w 'ng))) dn = 0,
N1 (F)\Ne, (A)

since fN,,(F)\N,,(A) d(w=tng)exp((sa+pp, Hp(w™Ing))) dn = 0, where N’ = wMw N
G- -

Tf w Np,w "M = 1, wMw™' N Ny, = 1. Since w(f) > 0, w(f) C =g . So
w(E;) C Z;;. Hence wMw™! C Mpy,. Since M is a maximal Levi subgroup,
wMuw™! = My,. This implies that w(f) = 0. (If w(e) = B+, where 8,7 € 57 ,
then o = w™1(B) + w™(y) with w™1(8),w 1(y) > 0. This contradicts to the fact
that « is simple.) If P is self-conjugate, there are two elements, namely w = 1, wy
such that w(f) = 6. Here we normalize the measure on the compact set N(F)\N(A)
so that fN(F)\N(A) dn = 1. So if w = 1, it gives rise to ¢(g)exp({sa + pp, Hp(g)))-

If w = wq, we obtain

/ $(wg 'ng)ezp((sé + pp, Hp(wy ng))) dn
N(A)



4

which is exactly M (s, 7)¢(g)exp({(—sa + pp, Hp(wy 'ng))). The other case is sim-
ilar.

Let us illustrate the above proof with an example: Let G = Sp(4), P = Py, 6 =
{e1 —e2}. Then M ~ GLy, and W(0,0) = {1, co, wyg = (12)c1ca}, where ¢, co are
sign changes. If w = ¢y, then w™ ' NwNM = U, _, = {diag((é T) , ((1) _13:))}

5.8 Pseudo-Eisenstein series. Note that N(A)M(F)\G(A) = (M(F)\M(A)!) -
A(R); -K. Then ezp({(s&, Hp(y))) = y* for y € A(R); ~ R, . We choose measures
dmy on M(A)! and da on A(R); (multiplicative measure, i.e., %y, where dy is a
measure on R) so that

/ f(g)dg:/ / / /f(nmlak)e_<2pP’HP(“)> dkdadmydn.
G(A) N(4) /M) JAR) 4 JK

Now E(s,n,$,g) is an automorphic form (see the lecture by J. Cogdell for the
precise definition) for any s, and for the trace formula, we need E(s,n,¢,qg) for
Re(s) = 0. Since non-constant terms are rapidly decreasing, they are square in-
tegrable. However, since the integral floo y® dy is convergent only for s < —1,
E(s,m,¢,g) is not square integrable at Re(s) = 0. It is integrable if —(pp,a) <
Re(s) < (pp, ). In order to obtain square integrable automorphic forms, we need
to multiply ¢ by special type of functions, namely, Paley-Wiener type functions
(Fourier transform of compactly supported functions on Ry ).

Consider ®(g, s) = ¢(g)h(s), where ¢ € H and h is a Schwartz function, namely,

where h € C°(R, ). Now let y = ® and s = o + it. Then

h(s) = / h(e®)e= @+t dg.
—infty

By Fourier inversion formula,

~ 1 o0 .
h(e®)e™" = —/ h(s)et dt.

21 J_

So we have

) = 5= [ T h(s)ytdi = o h(s)y® ds,

_27T —00 211 Re(s)=0>>0

where s = o + it (note that ds = idt).
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Let ®(g) = ¢(g)h(exp({@p, Hp(g)))). Here note that exp((d, Hp(g))) = v,
where y € A(R);, in the decomposition N(A)M(F)\G(A) = M(F)\M(A)! -
A(R); - K. We define the pseudo-Eisenstein series

N 1
o)=Y Swenlon Heto) = 5 | h()E(s. m, 6,9) ds.
271 Re(s)=0>>0
YEP(F)\G(F)
Here 05 converges absolutely and 0g € L*(G(F)\G(A),w).
Sometimes, we put together ¢ and h: ®(g, s) is the Fourier transform:

P(g,s) = /Ooo d(yg)exp((—sa — pp, Hp(y))) dy,

where y € A(R), and ® is a function on N(A)M(F)\G(A) such that y — ®(yg)
is compactly supported in A(R),. For each s, ®(g,s) € I(s,m). Now let y = €
and s = o +it. Then

2(g,5)= [ bl g)eap((~—pp, Hp(e))e "+ a.

— 00

By Fourier inversion formula,

bl g)ea((—pp, Hp(e))e ™ = o [ " (g, s)e " dt.

2m J_
By letting z = 0, we have
b =5 [ vgsa= o B(g,5) ds,
27 J_ o 27 JRe(s)=0>>0
where s = o + it. Let
a(9)= D, D) = %M/Re(s)za»oE(s,m@,g) ds.

YEP(F)\G(F)

We can define 64 for all parabolic subgroups. Let L*(G(F)\G(A),w)m,x) be the
closure of the subspace of L?(G(F)\G(A),w) generated by all such 65. We put an
equivalence relation on (M, ), namely, (M, m) ~ (My, ) if there exists w € W
such that w(M;) = M and w(my) ~ m2. Then

Theorem 5.4 (Langlands).
(1) LA(G(F\G(A),w) = &,x) L (G(F)\G(A),w) (m,x)-
(2) L2, (G(F)\G(A),w)(am,x), the discrete spectrum, is spanned by residues of
Eisenstein series. If P is maximal, they are the residues of E(s,m,®,g) for
0< s <{pp,c). (We move the contour Re(s) =oc >> 0 to Re(s) =0.)



(3) L2,,,(G(F)\G(A),w)(a,x), the continous spectrum. If P is mazimal, it is

cont
spanned by

1
— E(s, 7, ®,g)ds.
2mi Re(s)=0

(4) Let L2, (G(F)\G(A),w) be the discrete spectrum. Then

L3is(G(F)\G(A),w) = ® ) L5 (GF)\G(A), w) (ar,m)
=L2 . (G(F)\G(A),w) ® L2

Cusp res

(G(F\G(A),w),

where L7 (G(F)\G(A),w) = &u,m),mzc L (GIFN\G(A), w) (ar,7) -
(5) (inner product of two pseudo-FEisenstein series) Suppose P is mazimal.

(03,,05,) = / 0s,(9)05,(9) dg
Z(4)G(F)\G(4)
1

= — (M(saﬂ-a’w)él(s)?q)z(_wg)) ds,
271 J Re(s)=0>>0

weW (m1,m2)

where W (w1, m3) is the set of Weyl group elements such that w(My, ;) =
(Ms,m3). Hence W(my,ma) =1 or {1,wo}. Especially, L>-norm of 04 is

2

05

= 105(9)|* dg

/zm)G(F)\G(A)

=L S (M(s, 7, w)D(s), D(—w)) ds.

- 2mi -
Re(s)=0>>0 weW (m,m)

Corollary 5.5. Unless P is self-conjugate and wom ~ 7,

i.e., the Eisenstein series has no poles for Re(s) > 0, and M (s, ) is holomorphic
for Re(s) > 0.

Proof. If P is not self-conjugate, W (mw,w) = 1. If P is self-conjugate and wom # m,
then M (s, m, wg)®(s) € I(—s,wom), but ®(—wyS) € I(5, 7). Hence again W (w, ) =
1. So the integrand in ||64||? is just (®(s), ®(—5)), which is entire. Hence we can
deform the contour Re(s) = o to Re(s) = 0 without picking up residues. Hence
the Eisenstein series has no poles for Re(s) > 0. Since the poles of the Eisenstein
series coincide with those of M (s, ), M (s, ) is holomorphic for Re(s) > 0. O

If spisapole of E(s,m, ®,g),let E_(m,®,9) = ress—s, F(s,m, P, g9),and M_1P =
ress—so M (s, ™, wp). Then E_;(m, ®, g) is a square integrable automorphic form and

(E_1(m, ®,9), E_1(m, @, 9))znyarnan) = (M-_1®,®)mrE)\m@a))-k-
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Remark 5.6. Eisenstein series can be defined for residual representations. We call
them residual Eisenstein series. For example, let G = Sp(2n), P = MN, where
M ~ GL,,. Let x be a grossencharacter of F. We can consider x as a character
of M(A) by setting x(g9) = x(detg). Then x is a residual representation, namely,
X € L3;,(M(F)\M(A))(B,, x)» Where By is a Borel subgroup of M. This follows

from the fact that x is the Langlands’ quotient of Indx||"* ®@ x||"= 1@ --- ®
X| \_nT_l. We can form an Eisenstein series E(s, x,®). It is a generalization of
Siegel Eisenstein series
> |det(CZ + D),
YET o \T
where I' = Sp(2n,Z), T'se = TNP(Q), and Z = X +4Y, Y is a positive definite
symmetric matrix.

We can show that E(s, x, ®) is an iterated residue of Eisenstein series from Borel
subgroup.



