6. L-functions in the constant terms.

Recall the global intertwining operator $M(s,\pi) = \otimes_v A(s,\pi_v,w_0)$. For $f \in V(s,\pi)$,

$$f \in \otimes_{v \in S} V(s, \pi_v) \otimes \otimes_{v \notin S} f_v^0,$$

where S is a finite set of places, including archimedean places, and f_v^0 is the spherical vector such that $f_v^0(k_v) = 1$ for $k_v \in \mathbf{G}(\mathcal{O}_v)$. Suppose $f = \otimes f_v$, where $f_v = f_v^0$ for $v \notin S$. Then

$$M(s,\pi)f = \bigotimes_{v \in S} A(s,\pi_v,w_0) f_v \otimes \bigotimes_{v \notin S} A(s,\pi_v,w_0) f_v^0.$$

Langlands observed that L-functions show up in the calculation of $A(s, \pi_v, w_0) f_v^0$. First we need inducing in stages of induced representations. Suppose $\mathbf{P}_1 = \mathbf{M}_1 \mathbf{N}_1 \subset \mathbf{P}_2 = \mathbf{M}_2 \mathbf{N}_2$ are two parabolic subgroups. Then $\mathbf{P}_1 \longmapsto \mathbf{M}_2 \cap \mathbf{P}_1$ is a bijection from $\{\mathbf{P}_1 : \mathbf{P}_1 \subset \mathbf{P}_2\}$ onto the set of standard parabolic subgroups of \mathbf{M}_2 . Then $\mathbf{M}_2 \cap \mathbf{N}_1$ is the unipotent radical of $\mathbf{M}_2 \cap \mathbf{P}_1$; $\mathbf{M}_2 \cap \mathbf{P}_1 = \mathbf{M}_1 \cdot (\mathbf{M}_2 \cap \mathbf{N}_1)$ is the Levi decomposition.

Lemma 6.1 (inducing in stages). Suppose $\mathbf{P}_1 \subset \mathbf{P}_2$. Let $\mathbf{Q} = \mathbf{M}_2 \cap \mathbf{P}_1$. Let π be a representation of $\mathbf{M}_2(F)$ such that $\pi = Ind_Q^{M_2} \sigma \otimes exp(\langle \Lambda_0, H_Q() \rangle)$. Then

$$Ind_{P_{2}}^{G}\pi\otimes exp(\langle \Lambda, H_{P_{2}}()\rangle) = Ind_{P_{1}}^{G}\sigma\otimes exp(\langle \Lambda + \Lambda_{0}, H_{P_{1}}()\rangle),$$

where $\Lambda \in X^*(M_2) \otimes \mathbb{C}$ extends to $X^*(M_1) \otimes \mathbb{C}$.

Suppose π_v is spherical. Then $\pi_v \hookrightarrow I(\chi_v)$. By inducing in stages,

$$I(s, \pi_v) \subset Ind_B^G \chi_v \otimes exp < s\tilde{\alpha}, H_B() >= I(s\tilde{\alpha}, \chi_v).$$

We denote by $A(s\tilde{\alpha}, \chi_v, w_0)$ the intertwining operator for $I(s\tilde{\alpha}, \chi_v)$. Then $A(s, \pi_v, w_0) = A(s\tilde{\alpha}, \chi_v, w_0)|_{I(s, \pi_v)}$. Here $f_v^0 \in I(s\tilde{\alpha}, \chi_v)$, and

$$f_v^0(tuk) = \chi(t)exp < s\tilde{\alpha} + \rho_B, H_B(t) >,$$

for $t \in \mathbf{T}(F_v)$, $u \in \mathbf{U}(F_v)$, $k \in \mathbf{G}(\mathcal{O}_v)$. We need to calculate

$$A(s\tilde{\alpha}, \chi_v, w_0) f_v^0(e) = \int_{\mathbf{N}(F_v)} f_v^0(w_0^{-1}n) dn.$$

(for simplicity, we assume that **P** is self-conjugate.)

We reduce the calculation to SL_2 case by using cocycle relation of intertwining operators: Let $\Lambda \in \mathfrak{a}_{\mathbb{C}}^*$, χ a character of $\mathbf{T}(F)$. Let $A(\Lambda, \chi, w)$ be the intertwining operator from $I(\Lambda, \chi)$ to $I(w\Lambda, w\chi)$. Let $w = w_2w_1$ be a minimal length decomposition, i.e., $l(w) = l(w_1) + l(w_2)$. Then

Theorem 6.2. $A(\Lambda, \chi, w) = A(w_1\Lambda, w_1\chi, w_2)A(\Lambda, \chi, w)$.

Hence if $w = w_{\alpha_n} \cdots w_{\alpha_1}$, where $\alpha_1, ..., \alpha_n \in \Delta$ and l(w) = n, then

$$A(\Lambda, \chi, w) = A(w_{\alpha_{n-1}} \cdots w_{\alpha_1} \Lambda, w_{\alpha_{n-1}} \cdots w_{\alpha_1} \chi, w_{\alpha_n}) \cdots A(\Lambda, \chi, w_{\alpha_1}).$$

Each $A(w_{\alpha_i} \cdots w_{\alpha_1} \Lambda, w_{\alpha_i} \cdots w_{\alpha_1} \chi, w_{\alpha_{i+1}})$ is an intertwining operator for SL_2 : Suppose α is a simple root. Recall the homomorphism $\phi_{\alpha} : SL_2 \longrightarrow \mathbf{G}$ such that

$$\phi_{\alpha}\begin{pmatrix}1 & u\\ 0 & 1\end{pmatrix} = e_{\alpha}(u), \quad \phi_{\alpha}\begin{pmatrix}u & 0\\ 0 & u^{-1}\end{pmatrix} = h_{\alpha}(u), \quad \phi_{\alpha}\begin{pmatrix}0 & 1\\ -1 & 0\end{pmatrix} = w_{\alpha}.$$

Note that $exp(\langle \Lambda, H_B(h_{\alpha}(u)) \rangle) = |u|^{\langle \Lambda, \alpha^{\vee} \rangle}$. Also $\langle w\Lambda, \alpha^{\vee} \rangle = \langle \Lambda, (w^{-1}\alpha)^{\vee} \rangle$ and $exp(\langle w\Lambda, H_B(h_{\alpha}(u)) \rangle) = exp(\langle \Lambda, H_B(h_{w^{-1}\alpha}(u)) \rangle)$.

If $w = w_2 w_1$, $l(w) = l(w_2) + l(w_1)$, then

$$\{\alpha > 0, w\alpha < 0\} = w_1^{-1}\{\beta > 0, w_2\beta < 0\} \cup \{\gamma > 0, w_1\gamma < 0\},\$$

where it is a disjoint union. Hence by induction, if $w = w_{\alpha_n} \cdots w_{\alpha_1}$, where $\alpha_1, ..., \alpha_n \in \Delta$, l(w) = n, then

$$\{\alpha > 0, w\alpha < 0\} = \{\alpha_1, w_{\alpha_1}(\alpha_2), w_{\alpha_1}w_{\alpha_2}(\alpha_3), \cdots, w_{\alpha_1}\cdots w_{\alpha_{n-1}}(\alpha_n)\}.$$

Therefore, $\langle w_{\alpha_{i-1}} \cdots w_{\alpha_1} \Lambda, \alpha_i^{\vee} \rangle = \langle \Lambda, (w_{\alpha_1} \cdots w_{\alpha_{i-1}} (\alpha_i))^{\vee} \rangle$.

Now we compute the intertwining operator in the case of SL_2 . Let $G = SL_2(\mathbb{Q}_p)$ and χ_p is a character of \mathbb{Q}_p^{\times} . Let

$$A(s,\chi_p)f_p(g) = \int_{N_n} f_p(w_0^{-1}ng) \, dn,$$

be the intertwining operator for $I(s,\chi_p)$, where $N_p = \{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\}$, and $w_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Theorem 6.3 (Computation in the case of $SL_2(\mathbb{Q}_p)$; Gindikin-Karpelevich formula). Let χ_p be an unramified character. Then

$$A(s,\chi_p)f_p^0(e) = \frac{1 - \chi_p(p)p^{-s-1}}{1 - \chi_p(p)p^{-s}} = \frac{L(s,\chi_p)}{L(s+1,\chi_p)},$$

where f_p^0 is the spherical function such that $f_p^0(e) = 1$. It is the unique $SL_2(\mathbb{Z}_p)$ -fixed function satisfying $f_p^0\left(\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix}g\right) = \chi_p(a)|a|^{s+1}f_p^0(g)$.

Proof. We compute $A(s,\chi_p)f_p^0(e)=\int_{\mathbb{Q}_p}f_p^0(w_0^{-1}n)\,dx$. The Haar measure dx satisfies; $\int_{\mathbb{Q}_p}f(xy)\,dy=|x|^{-1}\int_{\mathbb{Q}_p}f(y)\,dy$, and $\int_{\mathbb{Z}_p}dx=1$. Hence $\int_{\mathbb{Z}_p^\times}dx=\int_{\mathbb{Z}_p}dx-\int_{p\mathbb{Z}_p}dx=1-\frac{1}{p}=\frac{p-1}{p}$. Also $\int_{p^{-m}\mathbb{Z}_p^\times}dx=p^m\int_{\mathbb{Z}_p^\times}dx$.

Any element of $x \in \mathbb{Q}_p$ can be written as $x = p^{-m}u$, $u \in \mathbb{Z}_p^{\times}$ (units in \mathbb{Z}_p), and $m \in \mathbb{Z}$. Note that for $n = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$,

$$w_0^{-1}n = \begin{pmatrix} 0 & -1 \\ 1 & x \end{pmatrix} = \begin{pmatrix} x^{-1} & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x^{-1} & 1 \end{pmatrix}.$$

Hence if $x \in \mathbb{Z}_p$, $f_p^0(w_0^{-1}n) = 1$. If $x = p^{-m}u$ with $m \ge 1$, then $f_p^0(w_0^{-1}n) = \chi_p(p^m)(p^{-m})^{s+1}$. Therefore,

$$\int_{\mathbb{Q}_p} f_p^0(w_0^{-1}n) \, dx = \int_{\mathbb{Z}_p} f_p^0(w_0^{-1}n) \, dx + \sum_{m=1}^{\infty} \int_{p^{-m}\mathbb{Z}_p^{\times}} f_p^0(w_0^{-1}n) \, dx
= 1 + \sum_{m=1}^{\infty} \chi_p(p^m)(p^{-m})^{s+1} p^m (1 - \frac{1}{p})
= 1 + (1 - \frac{1}{p}) \sum_{m=1}^{\infty} (\chi_p(p)p^{-s})^m = 1 + (1 - \frac{1}{p}) \frac{\chi_p(p)p^{-s}}{1 - \chi_p(p)p^{-s}}
= \frac{1 - \chi_p(p)p^{-s-1}}{1 - \chi_p(p)p^{-s}}.$$

More generally over an arbitrary algebraic number field, we can show

$$\int_{F_v} f_v^0(w_0^{-1}n) \, dn = \frac{L(s, \chi_v)}{L(s+1, \chi_v)}.$$

where $L(s,\chi_v) = (1 - \chi_v(\varpi_v)q_v^{-1})^{-1}$, ϖ_v is a uniformizer in F_v , and q_v is the number of elements in $\mathcal{O}_v/\mathfrak{p}_v$.

Corollary 6.4.

$$A(\Lambda, \chi_v, w) f_v^0(e) = \prod_{\beta > 0, w\beta < 0} \frac{L(\langle \Lambda, \beta^{\vee} \rangle, \chi_v \circ \beta^{\vee})}{L(1 + \langle \Lambda, \beta^{\vee} \rangle, \chi_v \circ \beta^{\vee})}.$$

If $F = \mathbb{R}$, we leave it as an exercise to show that

$$A(s,1)f_{\infty}^{0}(e) = \sqrt{\pi} \frac{\Gamma(\frac{s}{2})}{\Gamma(\frac{s+1}{2})},$$

where f_{∞}^0 is the spherical function satisfying $f_{\infty}^0\left(\begin{pmatrix} a & x \\ 0 & a^{-1} \end{pmatrix}g\right) = |a|^{s+1}f_{\infty}^0(g)$. Use the fact that

$$w_0^{-1}n = \begin{pmatrix} 0 & -1 \\ 1 & x \end{pmatrix} = \begin{pmatrix} \Delta_x^{-1} & -x\Delta_x^{-1} \\ 0 & \Delta_x \end{pmatrix} \kappa_{\theta(x)},$$

where
$$\Delta_x = \sqrt{1+x^2}$$
, $\theta(x) = \arctan(-\frac{1}{x})$, and $\kappa_\theta = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$. Hence
$$A(s,1)f_\infty^0(e) = \int_{-\infty}^{\infty} (1+x^2)^{-\frac{s+1}{2}} dx.$$

Proof of Theorem 6.2. Let $N(w) = U \cap w\overline{U}w^{-1}$, where \overline{U} is the opposite unipotent radical. By the commutator relation, each element of N(w) can be expressed in the form $\prod_{\alpha>0,w^{-1}\alpha<0} e_{\alpha}(u_{\alpha})$, where $u_{\alpha}\in F$ (in any order).

Some properties of $h_{\alpha}, e_{\alpha}, w_{\alpha}$;

$$\begin{split} e_{\alpha}(t_1)e_{\alpha}(t_2) &= e_{\alpha}(t_1 + t_2) \\ [e_{\alpha}(t), e_{\beta}(u)] &= \begin{cases} 1, & \text{if } \alpha + \beta \notin \Phi \\ e_{\alpha + \beta}(c_{\alpha\beta}tu), & \text{if } \alpha + \beta \in \Phi \end{cases} \\ h_{\alpha}(t)h_{\alpha}(u) &= h_{\alpha}(tu) \\ h_{\alpha}(t)e_{\beta}(u)h_{\alpha}(t)^{-1} &= e_{\beta}(t^{\langle \beta, \alpha^{\vee} \rangle}u) \\ w_{\alpha}e_{\beta}(u)w_{\alpha}^{-1} &= e_{w_{\alpha}\beta}(u). \end{split}$$

Consider

$$A(\Lambda, \chi, w) f(g) = \int_{N(w)} f(w^{-1}ng) \, dn = \int_{N(w)} f(w^{-1}nww^{-1}g) \, dn = \int_{\overline{N}(w)} f(nw^{-1}g) \, dn,$$

where $\overline{N}(w) = w^{-1}Uw \cap \overline{U}$. Here each element of $\overline{N}(w)$ can be expressed in the form $\prod_{\alpha>0, w\alpha<0} e_{-\alpha}(u_{\alpha})$, where $u_{\alpha} \in F$ (in any order). Let $w = w_{\alpha_n}w'$. Then

$$\{\alpha > 0, w\alpha < 0\} = \{w'^{-1}(\alpha_n)\} \cup \{\beta > 0, w'\gamma < 0\},\$$

and $\overline{N}(w) = \overline{N}(w') \cdot U_{-w'^{-1}(\alpha_n)}$. Hence

$$A(\Lambda, \chi, w) f(g) = \int_{U_{-w'^{-1}(\alpha_n)}} \int_{\overline{N}(w')} f(n' e_{-w'^{-1}(\alpha_n)}(u) {w'}^{-1} w_{\alpha_n} g) \ dn' du.$$

Here
$$n'e_{-w'^{-1}(\alpha_n)}(u){w'}^{-1} = n'w'^{-1}w'e_{-w'^{-1}(\alpha_n)}(u){w'}^{-1} = n'w'^{-1}e_{-\alpha_n}(u)$$
. Hence

$$\begin{split} &A(\Lambda,\chi,w)f(g) = \int_{U_{-\alpha_n}} \int_{\overline{N}(w')} f(n'w'^{-1}e_{-\alpha_n}(u)w_{\alpha_n}g) \, dn' du \\ &= \int_{U_{-\alpha_n}} A(\Lambda,\chi,w')f(e_{-\alpha_n}(u)w_{\alpha_n}g) \, du = A(w'\Lambda,w'\chi,w_{\alpha_n})A(\Lambda,\chi,w')f(g). \end{split}$$

The above cocycle relation of intertwining operators is quite general. Suppose $\mathbf{P} = P_{\theta}, \ \theta \subset \Delta$. Let $A(\Lambda, \pi, \theta, w)$ be the intertwining operator for $Ind_P^G \pi \otimes exp(\langle \Lambda, H_P() \rangle)$, where $w \in W$ is such that $w\theta \subset \Delta$. We can write $A(\Lambda, \pi, \theta, w)$ as a product of rank-one intertwining operators (i.e., intertwining operators for maximal parabolic subgroups).

Theorem 6.5. There exists a finite sequence $\alpha_1, ..., \alpha_n \in \Delta$ such that $\Omega_i = \theta_i \cup \{\alpha_i\}, \ \theta_{i+1} = w_i\theta_i, \ where \ w_i(\theta_i) \subset \Omega_i, \ w_i(\alpha_i) < 0.$ Then $w = w_n \cdots w_1, \ and$

$$A(\Lambda, \pi, \theta, w) = A(w_{n-1} \cdots w_1 \Lambda, w_{n-1} \cdots w_1 \pi, \theta_n, w_n) \cdots A(\Lambda, \pi, \theta, w_1).$$

Here let $\Phi(A_{\theta}, G)$ be the set of roots of G with respect to A_{θ} , and $\Phi_r(A_{\theta}, G)$ be the set of reduced roots. Let $\Phi_r^+(\theta, w) = \{\alpha \in \Phi_r^+(A_{\theta}, G) : w\alpha < 0\}$. Then

$$\Phi_r^+(\theta, w) = \{\alpha_1, w_1^{-1}\alpha_2, (w_2w_1)^{-1}\alpha_3, ..., (w_{n-1}\cdots w_1)^{-1}\alpha_n\}.$$

We explain the theorem using one example. Suppose $\mathbf{P} = \mathbf{MN} \subset Sp(2n)$, where $\mathbf{M} \simeq GL_{n_1} \times \cdots \times GL_{n_k} \times Sp(2l)$, and $\pi_1 \otimes \cdots \otimes \pi_k \otimes \sigma$ be a representation of $\mathbf{M}(F)$. Let

$$Ind_P^G \pi_1 |det|^{s_1} \otimes \cdots \otimes \pi_k |det|^{s_k} \otimes \sigma,$$

be the induced representation. Then $A(\Lambda, \pi_1 \otimes \cdots \otimes \pi_k \otimes \sigma, w)$ is a product of $A(s_i, \pi_i \otimes \sigma)$, i = 1, ..., k, $A(s_i - s_j, \pi_i \otimes \pi_j)$, $A(s_i + s_j, \pi_i \otimes \tilde{\pi}_j)$, $1 \leq i < j \leq k$, where

 $A(s_i, \pi_i \otimes \sigma)$ is the rank-one operator for $Ind \pi_i |det|^{s_i} \otimes \sigma$, $GL_{n_i} \times Sp(2l) \subset Sp(2(n_i + l))$ $A(s_i - s_j, \pi_i \otimes \pi_j)$ is the rank-one operator for $Ind \pi_i |det|^{s_i} \otimes \pi_j |det|^{s_j}$, $GL_{n_i} \times GL_{n_j} \subset GL_{n_i+n_j}$ $A(s_i + s_j, \pi_i \otimes \tilde{\pi}_j)$ is the rank-one operator for $Ind \pi_i |det|^{s_i} \otimes \tilde{\pi}_j |det|^{-s_j}$, $GL_{n_i} \times GL_{n_j} \subset GL_{n_i+n_j}$

We return to spherical representations and maximal parabolic case. Let π_v be a spherical representation of $\mathbf{M}(F_v)$, $\mathbf{P} = \mathbf{M}\mathbf{N}$ is a maximal parabolic subgroup. Let χ_v be the inducing unramified character. Then

$$A(s\tilde{\alpha}, \pi_v, w_0) f_v^0(e) = \prod_{\beta > 0, w_0 \beta < 0} \frac{L(s\langle \tilde{\alpha}, \beta^{\vee} \rangle, \chi_v \circ \beta^{\vee})}{L(1 + s\langle \tilde{\alpha}, \beta^{\vee} \rangle, \chi_v \circ \beta^{\vee})}.$$

Langlands observed that $\langle \tilde{\alpha}, \beta^{\vee} \rangle = i$, i = 1, ..., m: Let V_i be the subspace of ${}^L\mathfrak{n}$, generated by $E_{\beta^{\vee}} \in {}^L\mathfrak{n}$, $\langle \tilde{\alpha}, \beta^{\vee} \rangle = i$, where ${}^L\mathfrak{n}$ is the Lie algebra of ${}^L\mathbf{N}$. For each i, the adjoint action of LM leaves V_i stable. Let r be the adjoint representation of LM on ${}^L\mathfrak{n}$, and $r_i = r|_{V_i}$.

Theorem 6.6 (Langlands-Shahidi). r_i is irreducible for each i, and the weights of r_i are the roots β^{\vee} in ${}^L\mathfrak{n}$ which restricts to $i\alpha^{\vee}$ in LA .

Let $r = \bigoplus_{i=1}^m r_i$. Let t_v be the semi-simple conjugacy class in LT . Recall that $\chi_v \circ \beta^{\vee}(\varpi_v) = \beta^{\vee}(t_v)$.

Theorem 6.7 (Langlands-Shahidi).

$$A(s\tilde{\alpha}, \pi_v, w_0) f_v^0(e) = \prod_{i=1}^m \frac{L(is, \pi_v, r_i)}{L(1 + is, \pi_v, r_i)},$$

where

 A_n case.

$$L(s, \pi_v, r_i) = \prod_{\beta > 0, \langle \tilde{\alpha}, \beta^{\vee} \rangle = i} L(s, \chi_v \circ \beta^{\vee}), \quad L(s, \chi_v \circ \beta^{\vee}) = (1 - \chi_v \circ \beta^{\vee}(\varpi_v)q_v^{-s})^{-1}.$$

Examples 6.8. (1) $\mathbf{G} = GL_{k+l}$, and $\mathbf{M} \simeq GL_k \times GL_l$, $\mathbf{N} = \begin{pmatrix} I_k & X \\ 0 & I_l \end{pmatrix}$. Then $^LM \simeq GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$, and $r(diag(g_1, g_2))X = g_1Xg_2^{-1}$. Here r is irreducible. So in this case m = 1. More explicitly, let $\pi_1 = \pi(\mu_1, ..., \mu_k)$, $\pi_2 = \pi(\nu_1, ..., \nu_l)$ be spherical representations of $GL_k(F)$, $GL_l(F)$, resp. Then

$$L(s, \pi_1 \otimes \pi_2, r) = L(s, \pi_1 \times \tilde{\pi}_2) = \prod_{i=1}^k \prod_{j=1}^l L(s, \mu_i \nu_j^{-1}).$$

(2) $\mathbf{G} = Sp(2n)$, $\mathbf{M} = GL_n$ (Siegel parabolic subgroup). Then \mathbf{N} is generated by $\{e_i + e_j, i < j, 2e_i, i = 1, ..., n\}$, and $\tilde{\alpha} = e_1 + \cdots + e_n$. We can see that m = 2; $r = r_1 \oplus r_2$; ${}^L\mathfrak{n} = V_1 \oplus V_2$, where V_1 is spanned by $e_i, i = 1, ..., n$ (note that e_i is the coroot of $2e_i$); V_2 is spanned by $e_i + e_j, i < j$. Hence, for a spherical representation π of $GL_n(F)$,

$$L(s, \pi, r_1) = L(s, \pi)$$
, standard L-function of GL_n
 $L(s, \pi, r_2) = L(s, \pi, \wedge^2)$, exterior square L-function of GL_n

(3) Consider $E_7 - 1$ case in Example 1.36. We saw that there is a rational injection $f: \mathbf{M} \longrightarrow GL_2 \times GL_3 \times GL_4$. Then f induces an injection $f: \mathbf{M}(\mathbb{A}) \longrightarrow GL_2(\mathbb{A}) \times GL_3(\mathbb{A}) \times GL_4(\mathbb{A})$ such that $\mathbf{M}(\mathbb{A})(\mathbb{A}^*)^2$ is co-compact in $GL_2(\mathbb{A}) \times GL_3(\mathbb{A}) \times GL_4(\mathbb{A})$, where $(\mathbb{A}^*)^2$ is embedded as a center of the first two factors.

Let π_i , i = 1, 2, 3, be cuspidal representations of $GL_{1+i}(\mathbb{A})$ with central characters ω_i , resp. Then $\pi_1 \otimes \pi_2 \otimes \pi_3|_{f(\mathbf{M}(\mathbb{A}))}$ decomposes as a direct sum of irreducible representations of $\mathbf{M}(\mathbb{A})$. Let π be any cuspidal irreducible constituent of this direct sum. Then $\omega_{\pi} = \omega_1^6 \omega_2^4 \omega_3^3$. Let $\pi = \otimes_v \pi_v$. If π_v is a spherical representation, we can see that m = 4, and

$$L(s, \pi_v, r_1) = L(s, \pi_{1v} \times \pi_{2v} \times \pi_{3v}),$$

$$L(s, \pi_v, r_2) = L(s, \tilde{\pi}_{2v} \otimes \pi_{3v}, (\rho_3 \otimes \omega_1 \omega_2) \otimes \wedge^2 \rho_4),$$

$$L(s, \pi_v, r_3) = L(s, (\pi_{1v} \otimes \omega_1 \omega_2 \omega_3) \times \tilde{\pi}_{3v}),$$

$$L(s, \pi_v, r_4) = L(s, \pi_{2v} \otimes \omega_1^2 \omega_2 \omega_3).$$

List of L-functions via Langlands-Shahidi method (split reductive groups).

 $GL_m \times GL_n \subset GL_{m+n}$ gives the Rankin-Selberg *L*-function $L(s, \pi_1 \times \pi_2)$, where $\pi'_i s$ are cuspidal representations of GL_m, GL_n , resp.

 B_n case.

 B_n-1 : m=2; r_1 gives the Rankin-Selberg L-function of $GL_k \times GSpin(2l+1)$; r_2 gives the twisted symmetric square L-function of GL_k . If G=SO(2n+1), r_1 gives the Rankin-Selberg L-function of $GL_k \times SO(2l+1)$; r_2 gives the symmetric square L-function of GL_k .

C_n case.

 C_n-1 : m=2; r_1 gives the Rankin-Selberg L-function of $GL_k \times Sp(2l)$; r_2 gives the exterior square L-function of GL_k , if $k \neq 1$ (If k=1, then m=1).

D_n case.

- $D_n 1$: m = 2; r_1 gives the Rankin-Selberg L-function of $GL_k \times GSpin(2l)$; r_2 gives the twisted exterior square L-function of GL_k . If G = SO(2n), r_1 gives the Rankin-Selberg L-function of $GL_k \times SO(2l)$; r_2 gives the exterior square L-function of GL_k (If k = 1, then m = 1).
- $D_n 2$: m = 2; r_1 gives the triple L-function of $GL_{n-2} \times GL_2 \times GL_2$; r_2 gives the twisted exterior square L-function of GL_{n-2} .
- $D_n 3$: m = 2; r_1 gives $L(s, \sigma \otimes \tau, \rho_{n-3} \otimes \wedge^2 \rho_4)$; r_2 gives the twisted exterior square L-function of GL_{n-3} .

F_4 case.

- F_4-1 : m=4; r_1 gives $L(s,\sigma\times\tau)$ which is entire; r_2 gives $L(s,\sigma\otimes\tau,Sym^2\rho_2\otimes\rho_3)$ which has a pole at s=1 when $\tilde{\tau}\simeq Sym^2\sigma$.
- $F_4 2$: m = 3; r_1 gives $L(s, \sigma \otimes \tau, Sym^2 \rho_3 \otimes \rho_2)$; r_2 gives $L(s, \sigma, Sym^2 \rho_3 \otimes \omega_{\tau})$ which has a pole at s = 1 always.
- (xviii): m = 2; $M = GSpin(7) \subset F_4$; $dim r_2 = 1$; r_1 is the 14-dim'l irreducible representation of $Sp_6(\mathbb{C})$, called spherical harmonic.
- (xxii): m=2; $M=GSp_6\subset F_4$; $r_1=8$ -dim'l spin representation of $Spin(7,\mathbb{C})$; r_2 gives the standard L-function of $SO_7(\mathbb{C})$ (7-dimensional).

E_6 case.

- E_6-1 : m=3; r_1 gives the triple L-function of $GL_3\times GL_2\times GL_3$; r_2 gives the standard L-function of $GL_3\times GL_3$.
- E_6-2 : m=2; $r_1=\wedge^2\rho_5\otimes\rho_2$; r_2 gives the Rankin-Selberg L-function of $GL_5\times GL_2$ which is entire.
- (x): m = 2; $\dim r_2 = 1$; r_1 gives the exterior cube L-function of $GL_6(\mathbb{C})$ (20 dim'l irreducible representation of $GL_6(\mathbb{C})$)
 - (xxiv): m=1; $r_1=16$ -dimensional half-spin representation of Spin(10).

E_7 case.

- E_7-1 : m=4; r_1 gives the triple L-function of $GL_3\times GL_2\times GL_4$; r_2 comes from D_6-3 case.
- E_7-2 : m=3; $r_1=\wedge^2\rho_5\otimes\rho_3$; r_2 gives the Rankin-Selberg L-function of $GL_5\times GL_3$ which is entire.
- E_7-3 : m=2; r_1 gives the *L*-function $L(s,\sigma\otimes\tau,Spin^{16}\otimes\rho_2)$, where σ,τ are cuspidal representations of $GSpin_{10},GL_2$, resp. and $Spin^{16}$ is the 16-dimensional half-spin representation of $Spin_{16}(\mathbb{C})$.

- E_7-4 : m=3; r_1 gives the L-function $L(s,\sigma\otimes\tau,\wedge^2\rho_6\otimes\rho_2)$, where σ,τ are cuspidal representations of GL_6,GL_2 , resp.
- (xi): m = 2; r_1 gives the exterior cube L-function of $GL_7(\mathbb{C})$ (35-dimensional representation of $GL_7(\mathbb{C})$); r_2 gives the standard L-function of $GL_7(\mathbb{C})$ which is entire.
- (xxvi): m=2; $dim r_2=1$ and r_1 gives the degree $32=2^5$ spin L-function of $Spin_{12}$
 - (xxx): m=1; r_1 gives the standard L-function of E_6 .

E_8 case.

- E_8-1 : m=6; r_1 gives the triple L-function of $GL_3\times GL_2\times GL_5$; r_2 comes from E_7-2 case.
- $E_8 2$: m = 5; r_1 gives the *L*-function $L(s, \sigma \otimes \tau, \wedge^2 \rho_5 \otimes \rho_4)$, where σ, τ are cuspidal representations of GL_5, GL_4 , resp.
- E_8-3 : m=4; r_1 gives the *L*-function $L(s,\sigma\otimes\tau,Spin^{16}\otimes\rho_3)$, where σ,τ are cuspidal representations of $GSpin_{10},GL_3$, resp. and $Spin^{16}$ is the 16-dimensional half-spin representation of $Spin_{16}(\mathbb{C})$.
- E_8-4 : m=3; r_1 gives the standard L-function of $E_6\times GL_2$; r_2 gives the standard L-function of E_6 ((xx) case).
- $E_8 5$: m = 4; r_1 gives the *L*-function $L(s, \sigma \otimes \tau, \wedge^2 \rho_7 \otimes \rho_2)$, where σ, τ are cuspidal representations of GL_7, GL_2 , resp.
 - (xiii): m = 3; r_1 gives the degree 56 exterior cube L-function of GL_8 (xxviii): m = 2; r_1 gives the degree $64 = 2^6$ spin L-function of $Spin_{14}$ (xxxii): m = 2; $dim r_2 = 1$; r_1 gives the standard L-function of E_7 .

G_2 case.

- (xv) (attached to the maximal parabolic subgroup generated whose unipotent radical contains the long simple root subgroup): m = 2; $\dim r_2 = 1$, r_1 gives the third symmetric power L-function of GL_2
- (xvi) (attached to the maximal parabolic subgroup generated whose unipotent radical contains the short simple root subgroup): m = 3; $dim r_2 = 1$, r_1 gives the standard L-function of GL_2