4. Induced representations.

4.1 Harish-Chandra homomorphisms. Let G be a split reductive group and P =
MN be a parabolic subgroup defined over a field F'. If F' is a p-adic field with the
ring of integer O, then we have the Iwasawa decomposition: G(F) = P(F)G(0O).
In general, we have G(F') = P(F)K for some maximal compact subgroup K.

Let A be the connected component of the center of M. Let X*(M), X*(A) be
the group of characters of M, A, resp. Then by Proposition 1.9, X*(M) is of finite
index in X*(A). Hence X*(M)®zR = X*(A) ®zR. Note that if x € X*(M), x is
defined by a polynomial with coefficients in F', and hence defines a homomorphism
of E-rational points M(E) — E* for any extension field E/F. We denote it by
the same Y.

Set a* = X*(M) ®z R, and af = a* Qg C. Let a = Hom(X*(M),R) =
Hom(X*(A),R) be the dual space. In fact, we define the pairing a x a* — R
by: if x®@r €a*, re€R and A € a, then < A\, x @ r >= A(x)r.

Suppose first that F' is a local field. Define the homomorphism Hy; : M(F) — a
by

637p(<X, HM(m») = |X(m)‘7

where x € X*(M) and m € M(F) and || is the absolute value in F. If F is
a p-adic field, then we replace exp by ¢q,. We extend Hys to Hp : P — a by
extending it trivially on N(F). We can extend Hp further on G(F') using the
Iwasawa decomposition G(F) = P(F)K by exp({x, Hp(mnk))) = |x(m)|.

Suppose F is global. If x € X*(M), for every place v of F', x defines a homo-
morphism y : M(F,) — F,*. So we define the homomorphism Hjys : M(A) — a
by

exp({x, Hu(m))) = [ [ Ix(m)lo,

where x € X*(M) and m = (m,) € M(A). For almost all v, x defined by a
polynomial in O,, and m, € M(O,). Hence x(m,) € O} for almost all v. So
|x(my)|y = 1 for almost all v, and the above product is a finite product. We extend

H)yr to Hp as in the local case. Observe that for each v, we can define Hp, and,
for x € X*(M) and m = (m,) € M(A),

ezp((x, Hp(m))) = [ [ exp((x, Hp, (m.))),

v

We call Hp Harish-Chandra homomorphism. It is closely related to the modulus
character 0p of P: Note that P is not unimodular. The modulus character dp is
the ratio of the right and the left invariant Haar measures on P (i.e., If d,p is
the right Haar measure on P, then dp(m)d,p is the left Haar measure d;p). Let
Ad : M — End(n) be the adjoint representation, where n is the Lie algebra of 1.
Then we can show that dp(m) = |det Ad(m)| for m € M.

Let 2pp be the sum of positive roots in N. More precisely, if P = Py, 8 C A,
then by Theorem 1.34, 2pp is the sum of roots in & — X, where 1 = {6},N P,
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Then we can show that |(2pp)(m)| = dp(m). Hence

ol

t t
exp({tpp, Hu(m))) = exp(5(2pp, Hy (m))) = |(2pp)(m)|= = op(m)=.
Example 4.1. Let B = TU. Suppose t = H§=1 ha,(t;), where t; € F*, where
{ay, ...,aq} are simple roots. Then

!
exp({pp, Hp(t))) = H It (P o)
=1

We show that (pp, ;) = 1 for all i: Note that {pp, ;) = % First we show
that we(p) = pp — a for any simple root . Note that w,(a) = —a and wq,
leaves @, — {a} invariant. Hence if p, is the half-sum of elements of @, — {a},
We (Pa) = Pa- Since pp = po + §, Wa(pB) = pB — .

Since (, ) is the Weyl group invariant, (wq(pB), wa()) = (pB, ). So (pB —
o, —a) = (pp, @). This imples that (pp, @) = 1(a, a).

Now assume that P is a maximal parabolic and let s € C. Suppose P = Py,
0 =A—{a}fora € A. Set & = (pp,a) 1pp € a*, where (pp,a) = %. Then
« is the fundamental weight corresponding to a. ’
Ezample 4.2. (1) Let P = MIN C Sp(2n) such that P = Py, where § = A — {2e¢,}.
So M ~ GL,,. Then we can show that pp = "Tﬂ(eﬁ—- cten),and @ = e+ - -+ey.
Hence exp({(sa, Hp(m))) = |det(m)|*. If we define Sp(2n) = {g € SL(2n)|tgJg =

J}, where J = < 0 I"), then M = {m' = (m ‘ 0_1> |m € GL,}, and
-1, 0 m
X

0
I,
End(n) is given by Ad(m') : X — mX?'m, where m € GL,(F) and X isann X n
symmetric matrix. We leave as an exercise to show that detAd(m') = det(m)"*?.
Hence we again obtain exp((&, Hp(m'))) = |det(m)|. More concretely, Hp(m') =
log |det(m)|.

(2) Let P = Pp = MIN C SO(2n + 1), where § = A — {e,} such that M ~
GL,. In this case, pp = Z(e; + -+ +e,) and @ = Z(e; + -+ + e,). Hence
exp({sa, Hp(m))) = |det(m)|2

(3) Let P = MN C GLg4y, where M ~ GLg x GL;. Then M = {m =

diag(my, m2)}, where my € GLg,mo € GL;, and n = {(O X)}, where X is an

N = {(Ié1 }, where X is an n x n symmetric matrix. Hence Ad : M —

0 O
k x | matrix. Then Ad : M — End(n) is given by Ad(m) : X — m;Xm;".
Hence detAd(m) = det(my)'det(ms2)~F. In terms of roots, 2pp = l(e1 + -+ -+ ex) —
k(eks+1+ -+ €rti)-

We continue to assume that P is maximal. If G is semi-simple, a ~ R. We
write the kernel of Hp : M(A) — a by M(A)!. Then we have a direct product
decomposition

M(A) = M(A)' x A(R)4.
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Since A ~ GL(1), A(R); ~ Ry, and AR)y = {@Y(tw) : ¢t € R}, where n =
(&,&"). Note that exp((sa, Hp(a"(t=)))) = t* for t € Ry. Clearly, M(F) C
M(A)! and

M(F)\M(A) ~ M(F)\M(A)! x A(R)..
Here M(F)\M(A)! is not compact in general, but it does have a finite volume.

Ezample 4.3. Let I = A* be the ideles, i.e., I = GL1(A). Then we have || :
I — R, defined by |z| = [], |#y|s if # = (2,). Denote the kernel by I'. Then
F* C I', and we have a direct product decomposition I ~ I' x R, . Here Ry — I
is defined by t — (t%,...,t%,l,...,l,...), where n = [F : Q] and 1’s are on the
finite components. We denote Ff = {(u,...,u,1,...,1,...) € I,u > 0}. Then
I/F* ~I'/F* x Ff. Here I'/F* is compact.

Let m be a cuspidal representation of M(A).

Normalization of cuspidal representations. We normalize © by requiring that
w is trivial on A(R), .

This is necessary later to put possible poles of Eisenstein series and L-functions
on the real axis. This normalization gets rid of the twisting by the characters | |4,
where t € iR, namely, we do not consider the cuspidal representations of the form
7 Q| [4. In the case of M = GL,, this means that we assume that the central
character w, is trivial on F.f. (If zI,, is in the center, we define w,(z) = w(z1I,).)

4.2 Induced representations: F local. Let (w, W) be an irreducible admissible
representation of M(F'). Let I(s&, ) be the induced representation of G(F);
I(sa,7) = Ind$ 7 ® exp((si, Hp())) ® 1.

The representation space V = V(sa, ) is the vector space of all smooth functions
f: G(F) — W such that

f(mng) = m(m)exp((sa + pp, Hp(m))) f(9),

for all m € M(F'),n € N(F),g € G(F). The action is

(I(s@; m)(9)f)(h) = f(hg),

for all f € V and g,h € G(F). The reason we add pp is to normalize I(s&, ) so
that if 7 is unitary, then I(s@, ) is unitary for s € iR

Ezamples 4.4. (1) Let MIN C Sp(2n) with M ~ GL,,. Let m be a representation
of GL,(F). Then I(s&, ) = Ind§ 7 ® |det()|* ® 1. (Usually, we skip 1.)

(2) Let MN C GLyy 4y with M ~ GL,;, X GL,,. Let w1, 72 be representations of
GL,,(F),GL,(F), resp. In this case, because of the center, dima = 2, and & and
e1+ -+ emin form a basis for a. So choosing the coordinates si(e1 +-- -+ em) +
s2(em+41 + -+ + em+n) € ag, we define the induced representation

1(81,82,71'1 ® 71'2) = I’I’Lle:ﬂTl X |d€t|81 R T ® |d6t|s2.



Sometimes, we take s; = 3,52 = —3, we denote I(s, 711 ® m2) = I(5, —5,m1 ® T2).
We call this parabolic induction. Parabolic induction can be defined for arbitrary
parabolic subgroups; I(v,0) = Ind$ 7 ® exp((v, Hp())) for v € (ag)%, where a} =

X*(My) @ R, where P = Py = MyNy, and o is a representation of M(F).

Special case of principal series:. Let B = TU be a Borel subgroup and let x be
a character of T(F). Then I(v,x) = Ind$ x ® exp({v, Hg())) is called principal
series, where v € af.. Since exp({v, Hg())) is a character of T(F'), it is a convention
just to write I(x) by absorbing it into x. The representation space is

Vx) =1{f: G(F) — C: f(tug) = x(t)ezp({pn, Hp(1))) f(9)},
where t € T(F),u € U(F).

Ezample 4.5. Let G = GLy. Let x = pu1 @ pa, where g, 1o are characters of F'™,
where F is a p-adic field with the ring of integer O. In this case, exp({pp, Hp(diag(a1, as)))) =
lazayt|2. So I(u1, ) is the induced representation on the space

x
a2

Vsoa) = (7 GLF) = €15 2 ) 9) = mana(os) aray o)),

We can show that I(ui,ps) is irreducible if and only if pypuy ' # [|FY V =
I(p| |2, p||~?) is reducible, where p is a unitary character. We have a composition
series: 0 C W C V, where W is the unique invariant subspace. Then (o, W) is
square integrable, called Steinberg representation. (7, V/W) is the one-dimensional
representation of GLy(F), namely, 7 = p o det.

We can also show that if 7 is spherical, then © C I(u1, p2) such that uq, pys are
unramified, i.e., u;|o = 1. Let a = p1(w), 8 = p2(w), where w is a uniformizer of
F. Then 7 is uniquely determined by the semi-simple conjugacy class of diag(«, 3).

4.8 Intertwining operators for I(s,n). Suppose P = P, where § = A — {a}.
There exists a unique element wy € W such that wg(d) C A and wy(a) < 0.
Define, for f € V(sa, ),

A(s, m, wo) f(g) = / f(wyng) dn,

N'(F)

where N’ is the unipotent radical of the standard parabolic subgroup P’ = P, ).
A(s, m,wyp) is called intertwining operator, since A(s, m, wg) : I(s,7) — I(—s,wo(m)).
Definition 4.6. A maximal parabolic subgroup P = Py is called self-conjugate if
Proposition 4.7. The non self-conjugate mazximal parabolic subgroups of split
groups whose derived groups are almost simple, are the following:

(1) Type An: n even, all maximal parabolic subgroups, or n odd, all exrcept
0 =A— {enT—l - EnT-I—l}. This is the case GLy X GLy, C GLyyy, where
n # m.



(2) Type D,,: n odd and § = A — {«ay,}. This is the case GL,, C SOa,.

(3) Type Eg: 0 = A—{as}. This is the case P = MN, where the derived group
OfM 18 SLQ X SL5

(4) Type Eg: 0 = A—{a1}. This is the case P = MN, where the derived group
of M is Spin(10).

Hence if P is self-conjugate, the intertwining operator is simpler, namely,
Als,m o) f(9) = [ (g ng) dn,
N(F)

We can show that A(s,m, wp) is convergent for Re(s) >> 0.
Theorem 4.8. A(s, 7, wp) has a meromorphic continuation to all of C.

The intertwining operators can be defined for any parabolic subgroups P = Py =
MN. Let w € W such that w(f) C A. Let N = N_g4 be the unipotent subgroup
opposed to N. Let N, = UNnwNw~!. Given f € I(v,0), we define

Ay, 0,0)f(g) = /N ) an

Then A(v,0,w) : I[(v,0) — I(wv, wo).

4.4 Digression on admissible representations. Let G be a split reductive group
defined over a p-adic field F. In this section, let G = G(F). Let (m, V) be a
representation of G. If K C G, define VE = {v € V : w(k)v = v for all k € K}.

Definition 4.9. (1) (m,V) is called smooth if every v € V lies in VE for some
open compact subgroup K. This is equivalent to the condition that ™ be continuous
with respect to the discrete topology on V.

(2) (m,V) is admissible if it is smooth and VE has finite dimension for every
open compact subgroup K.

(3) (7, V) is supercuspidal if for every proper parabolic subgroup P and any
admissible representation o of M, Homg(V,I(v,0)) = 0. This is equivalent to the
condition that Vi (Jacquet module)=0 for any unipotent radical N. This is also
equivalent to the condition that the matriz coefficient ¢, 5(g9) =< m(g)v,v > has

compact support on G modulo Z (the center of G), where v € V,v € V (the dual
space).

(4) (w,V) is a discrete series (square integrable) if the central character of 7 is
unitary and the matriz coefficient c, ; is square integrable modulo the center, i.e.,
lcv 5] € L2(G/Z).

(5) (w,V) is a tempered representation if |cy 5| € L*T¢(G/Z) for every € > 0.
This is equivalent to the condition that 7 is a direct summand of the induced repre-
sentation I(0,0), where o is a discrete series of M. (Determining direct summands
and multiplicities are subjects of R-group)
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Proposition 4.10 (Jacquet). Let (w, V) be any irreducible admissible represen-
tation of G. Then there exists a parabolic subgroup P = M N, and a supercuspidal
representation o of M, such that m — I(v,0).

Proposition 4.11. Let (I(v,0),V) be the induced representation, where P = Py =
MN.

(1) There exists a composition series 0 =V, C V.1 C ---C V1 C Vp = V.
We call the resulting irreducible representations (m;, V;/Viy1) subquotients
of I(v,0).

(2) If o is supercuspidal, then n < #W(0,0), where W(0,0) = {w € W|wh =
0}. It is isomorphic to N(M)/M, where N(M) is the normalizer of M in
G.

(3) If m is any subquotient, then there erists w € W (0,0) such that m —
I(wv,wo), where wo(m) = o(wow™1).

Suppose o is tempered, and P = Py.

Definition 4.12. We say that I (v, o) is in the Langlands’ situation if Re({v,aV)) >
0 forallao € A—9.

Example 4.13. Let G = GL,,. Let P = MN, M ~ GL,,, X --- X GLy,, and 7;’s
are tempered representations of GL,, (F'). Then the induced representation

IndG m|det|™ ® - - - @ mg|det|™",

is in the Langlands’ situation if 7, > --- > r,. (Note that we can absorb the
imaginary part of r;’s inside 7;, using the fact that m; ® x is tempered if x is
unitary.)

Theorem 4.14 (Langlands’ classification theorem). Let F' be a local field. (1)
Suppose I(v, o) is in the Langlands’ situation. Then I(v,0) has a unique irreducible
quotient, called Langlands’ quotient, and we denote it by J(v,0).

(2) J(v,0) is the image of the intertwining operator A(v, o, wy), where wo is the
longest Weyl group element of W /Wy, where Wy is the subgroup of W, generated
by w,, a € 0.

(3) Any irreducible admissible representation © of G(F') occurs uniquely as some
J(v,0). We call (P,v,0) Langlands’ data for .

Note: If I(v, o) is arbitrary, by the Weyl group action, we can make I(wv, wo)
be in the Langlands’ situation. The subquotient of I(wv, wo) is called Langlands’
subquotient of I(v, o).

Definition 4.15 (Contragredient representation). Let (m,V) be a represen-
tation of G. Let V' be the space of all continuous linear functionals on V. The

contragredient representation of w is denoted by (7,V'), and is defined by

(7(9)f)(v) = f(m(g™ ),



for feV andveV.

Facts: (1) If 7 = I(v,0), then @ = I(—v,0). Hence in particular, if 7 = I(x)
(principal series), T = I(x~1).
(2) If G = GL,(F), then 7 ~ 7/, where (7', V) is defined by 7'(g) = w(*g™1).
(3) If G = GLy(F), then # ~ 7 ® w !, where w, is the central character of .
(4) If 7, is a spherical representation of G(F,), then L(s, m,,7) = L(s, Ty, r) for
any finite dimensional representation r : LG — G Ly (C).
0

(5) Let G = Sp(2n), P = MN, M = (g tg_1>, where g € GL,,, and wg =

( (_)[ I(?) Then for a representation of M(F), wom ~ 7 if and only if 7 ~ 7,
—in
i.e., 7 is self-contragredient (or self-dual).

Let G = GLy,, P = MN, M = (901 go ) where 1,92 € GL,, and wy =
2

(IO Ig) Then for representations w1, my of GLy, (F), wo(m & me) ~ m @ o if
n
and only if m ~ ma.

Special cases of induced representations. (A) P = MN maximal and o is a
supercuspidal representation of M(F'), where F' is a p-adic field: Let I(s, o) be the
induced representation. We can assume that s € Ry U {0}.

(1) Unless P is self-conjugate or woo ~ o, then I(s,o) is irreducible for all s.
If I(s,0) is reducible, then it has length 2.

(2) Suppose P is self-conjugate and wgo =~ o. Then there exists a unique
so € Ryo U {0}, such that I(+sp, o) is reducible and I(s, o) is irreducible for
all s # sq.

(3) If so > 0, then 0 C V C I(sg,0) and (m,V) is an irreducible square inte-
grable representation and (m,I(sg,0)/V) is the Langlands’ quotient.

(4) If o is generic (we will define later), then so € {0, 3, 1}.

(B) P = B and I(y) is the principal series, where x is a quasi-character of T(F),
and F is a p-adic field. Let K = G(O) be the maximal compact subgroup. Let
G =G(F).

Definition 4.16. A representation m of G is called spherical if it has a non-zero
K -fixed vector.

Theorem 4.17 (Borel-Matsumoto). If w is spherical, then there exists an un-
ramified quasi-character x of T(F') such that m — I(x).

The quasi-character x is also given by the Satake isomorphism: Suppose (7, V)
is spherical. Then we have a representation of H(G, K) on the one-dimensional
space VE =< vy >, where H(G, K) is the space of C-valued compactly supported
functions on G which are left and right K-invariant. We denote it by A,. It is given
by

At H(G,K) — C,  Ar(n)ve = 7(n)vg = /Gn(g)ﬂ(g)vo dg.



The Satake isomorphism is given by
H(G7K) _>H(T7TO)Wa f'_> Sf7

where Typ = TN K and Sf(t) = 8(t)* [, f(tu) du. Since T/Ty ~ Z", H(T, Tp) ~
Clz1, ..., z,], where z; is mapped to the characteristic function of ¢; Ty, and t;’s are
generators of T'/Ty.

Hence A, gives rise to an unramified character o, : T — T/Ty — C. We call
o (t1), ..., 0x(ty) Satake parameters. They determine 7 uniquely.

Theorem 4.18. o, = x.

Since Hom(T /Ty, C*) ~ (CX)® ~ LT, there exists an isomorphism x — .
between the group X of unramified characters of T and LT, such that x(aV (w)) =
aV(tr), where oV on the right is regarded as a character of T, and w is a uni-
formizer of F. The Satake parameters o (t1),...,0x(tn) map to ¢, under the iso-
morphisms. We can show that there is a bijection between Weyl group orbits X /W
and semi-simple conjugacy classes in G. So we call t, a semi-simple conjugacy
class in T c G,

Theorem 4.19. Let x be any unramified quasi-character of T'. Then the Lang-
lands’ subquotient of I(x) is spherical.

Suppose I is the Iwahori compact subgroup. It is the inverse image of B(F,) of
the canonical surjection G(O) — G(O/p). Here O/p =F,,.

Theorem 4.20 (Borel-Matsumoto, Casselman). There is a category equiv-
alence between irreducible admissible representations which have a non-zero fixed
I-fixed vector and finite dimensional representations of H(G,I). Irreducible rep-
resentations which have a non-zero fixed I-fired vector are exactly subquotients of
I(x), where x is unramified.

4.5 Induced representations: F global. Suppose 7 be a cuspidal representation of
M(A), and P = Py = MN is a maximal parabolic subgroup. Then we can define
the global induced representation

I(s, ) = ®@,I(s, 7).

It is the restricted tensor product, namely, let V (s, 7,) be the representation space
for I(s,m,) for all v. Then the representation space for V (s, ) is defined as follows:
Given f € V(s, ), there exist a finite set S of places, including archimedean places,
such that f € ®uesV (s, my) ® ®v¢5f19, where f0,v ¢ S, is the spherical vector
with f9(k,) = 1 for k, € G(O,). Similarly, one can define the global induced
representations for arbitrary parabolic subgroups.

For f € V (s, ), define

M(s,m)f(@)= [ fwy ng)dn,
N'(4)
where N’ is the unipotent radical of P’ = P, (4). Then
M(s,m) = @, A(s, Ty, wp).
It is called the global intertwining operator, and M (s, w) : I(s, ) — I(—s, wo(7)).
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Theorem 4.21 (Langlands). o is an automorphic representation of G(A) if and
only if o is a subquotient of I(v, ) for some cuspidal representation m of M(A).

Here ¢ = ®,0, and o, is a spherical representation for almost all v, and o, is a
subquotient of I(v,m,) for all v. (We may take this as a definition of automorphic
representations. For definitions of automorphic representations, see the lecture by
J. Cogdell.)

4.6 Induced representations as holomorphic fiber bundles. In the trace formula
and other applications, one needs to take derivatives of intertwining operators and
scalar products. Our definition of M (s, ) is that f has dependence on s. We want
to separate the dependence on s from f. So we define I(s, ) in a different way.

Let 7 be a cuspidal representation of M[(A). Recall that 7 occurs as a direct sum-
mand in the decomposition of L3(w) = L3(M(F)\M(A), w), i.e., the representation
space V of 7 is a subspace of L2(w). We have the Iwasawa decomposition

G(A) = N(AM(A)K,

where K is the maximal compact subgroup, given as K = [[ K,, where K, =
G(0,) for v < co. Then N(A)M(F)\G(A) = (M(F)\M(A)) - K. Now we define
Hp to be the set of functions

¢ : N(AM(F)\G(A) — C,

such that

(1) ¢ is right K-finite; this means that the space spanned by ¢, k € K, is finite
dimensional, where ¢r(g) = ¢(gk). This is equivalent to: Let ¢ = ¢|k.
Then ¥ = 91 @ - - - @ 1),., where 9;’s are irreducible representations of K.
(2) for each k € K, the function m — ¢(mk), m € M(A), belongs to V.
Then I(s, ) is equivalent to {gexp((sa+pp, Hp()))| ¢ € H}. Especially, I(0, )
is equivalent to the space {pexp({pp, Hp()))| ¢ € H}. Then the intertwining oper-
ator M (s, m) is an intertwining operator from Hp to Hp:, given as

M mglg)esn((—sictor, Hinl) = [ tw ng)eapl(sicpp, Hi(ug 'ng) dn

Define a sesqui-linear form (, ) on I(s,7) x I(—5,m) (or on H x H) by

(61, ¢2) = / $1(9)F2(g) dg = / / 1 (k) o () dmdk.
AR);N(AM(F)\G(A) K JM(F)\M(A)!

Note that M(F)\M(A) ~ M(F)\M(A)! x A(R), . (”Sesqui” means ”one and half-
times”. It is appropriate because it satisfies (az,y) = a(z,y), (z,ay) = a(z, y).)

Background from measure theory. We note the following two results from mea-
sure theory.

(1) Let G be a locally compact topological group and H C G be a closed
subgroup. Then there exist measures dg, dh,dz on G, H,G/H such that

/Gf(g)d!J:/G/H(/Hf(a:h)dh)da:,
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for f € C.(G).

(2) Let G be a locally compact topological group, and A, B subgroups of G
such that AN B is compact, and G = A- B. If (G is unimodular, and da is a
left invariant measure on A, and db is a right invariant measure on B, then
we can choose an invariant measure dg on G such that

/G f(g)dg = /A XBf(ab) dadb,

for f € C.(Q).



