AUTOMORPHIC L-FUNCTIONS

Henry H. Kiv*

0. Introduction.

The goal of this course is to give a proof of functoriality of symmetric cube and
symmetric fourth of cuspidal representations of GL2(A), where A is the ring of
adeles of a number field F. Let 7 = ®,m, be a cuspidal representation of GLy(A).
Let Sym™ : GLy(C) —> G Ly, +1(C) be the symmetric mth power representation.
By the local Langlands’ correspondence, Sym™ (m,) is a well-defined irreducible ad-
missible representation of GL,,4+1(F,) for each v. Then Sym™(w) = ®,Sym™(m,)
is an irreducible admissible representation of GLp,41(A).

Conjecture 0.1 (Langlands). Sym™(w) is an automorphic representation.

Theorem 0.2.

(1) (Gelbart-Jacquet) Sym?(w) is an automorphic representation of GL3(Af).
(2) (Kim-Shahidi) Sym?(r) is an automorphic representation of GL4(AF).
(3) (Kim) Sym*(r) is an automorphic representation of GLs(Ar).

We use the Langlangs-Shahidi method and the converse theorem of Cogdell-
Piatetski-Shapiro. For this, we need exceptional groups of type Eg, E7; and Dy,
(spin groups). We will first develop necessary background. The following is a
syllabus for the course.

(1) Chevalley groups and their properties
(2) Cuspidal representations
(3) L-groups and automorphic L-functions
(4) Induced representations and intertwining operators
(5) Eisenstein series and constant terms
(6) L-functions in the constant terms
(7) Meromorphic continuation of L-functions
(8) Generic representations and their Whittaker models
(9) Local coefficients and non-constant terms
(10) Local Langlands conjecture
(11) Local L-functions and functional equations
(12) Normalization of intertwining operators
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(13) Langlands’ functoriality

(14) Converse theorem of Cogdell and Piatetski-Shapiro

(15) Holomorphy and boundedness in vertical strips of L-functions
(16) Functoriality of symmetric cube

(17) Functoriality of symmetric fourth

1. Chevalley groups and their properties.
This section is mostly from [Bo], [Hum], [Sa], and [Se].

1.1 Algebraic groups. Let F be a field, and let G be an affine algebraic group
defined over F. The easiest way to define it, is to define it as a subgroup of
GL(n, ), where  is an algebraically closed field, containing F' such that G is the
set of solutions of a finite set of polynomial equations in X;; with coefficients in F’
(we assume, for simplicity, that F' is of characteristic zero). In algebraic geometry
terms, G is an algebraic variety (closed subset in Zariski topology).

Ezxamples 1.1.

(1) G = GL(n). It is a closed set in ™" +1 defined by a polynomial det(X;;)Y =
1. We usually denote GL(1) by G,, and @ by G,, which is isomorphic to

1 =
the group {(0 1 }
(2) G = SL(n) is defined by det(X;;) — 1.

(3) G = Sp(2n) = {g € SL(2n)|tgJg = J, J = (—Jn Jn) g, =

1
This is given by 4n? polynomial equations. It is called symplectic group.
Note that Sp(2) = SL(2).
(4) G = Rg)/0(Gnm) is called the restriction of scalars, because G(Q) =

GL(1,Q(:)). It is given by {(_xy z> € GL(2,9)}. Similarly, G =
RQ(i)/Q(GL@)) is defined.

We will always write in bold letters to denote algebraic groups, in order to
emphasize that it is a subgroup of GL(n,2). If G is an algebraic group, then
G(F') denotes the group of F-rational points. If G C GL(n) is defined by a set of
polynomials with coefficients in a commutative ring R, we can define the group of
R-rational points by G(R) = G N R"°+1. Hence, for example, GL(n, R) is the set
of n x n matrices over R whose determinants are units in R. So GL(2,Z) is the set
of 2 x 2 matrices with integer components and whose determinants are +£1.

Definition 1.2. Let G be a connected algebraic group. The radical of G, denoted
by R(G) is a maximal element in the set of connected solvable normal subgroups of
G. The unipotent radical of G, denoted by R, (G), is the unipotent part of R(G),
i.e., the set of unipotent elements of R(G).
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Recall that g € G is semi-simple if g is similar to a diagonal matrix; g is unipotent
if (9 — 1)™ = 0 for some positive integer m. By Jordan decomposition, any g can
be written uniquely g = g¢59.,, where g, is semi-simple, g, unipotent and g, g,
commute.

Definition 1.3. G is called semi-simple if R(G) = 1; G is called reductive if
R,.(G)=1.

One can think of reductive groups as groups like GL(n). Semi-simple groups are
like SL(n), where the center is finite.

Proposition 1.4. (1) (Levi decomposition) Suppose G is a connected algebraic
group defined over a field F' of characteristic zero. Then there exists a reductive
subgroup M C G such that G = MR, (G) (semi-direct product).

(2) Suppose G is reductive. Then G = R(G) - G’ (almost direct product, i.e.,
the intersection is finite), where G’ is the derived group, i.e., G' = [G,G]. Also
R(G) is the connected component of the center of G.

We will use the Levi decomposition mostly in the case of parabolic subgroups.

Definition 1.5. An algebraic group T defined over F' is called torus if T is iso-
morphic to GL(1)™ for some n € Z,. A torus T is called split over F if the
1somorphism is defined by a polynomial with coefficients in F'.

Ezamples 1.6. Let D(n) be the group of diagonal matrices in GL(n). Then clearly,
D(n) is a torus. The algebraic group G = Rg(;),0GL(1) in examples 1.1, is a torus.
In fact, G ~ GL(1)2. The isomorphism is ( v y) — (m tye 0 )

-y T 0 T — Yl
Notice that the isomorphism is not defined by polynomials with coefficients in Q.
This is an example of quasi-split torus. In this course, we will only deal with split
tori.

Definition 1.7. Let G be an algebraic group. Define X*(G) to be the group of
characters defined over F, i.e., the group of homomorphisms G — GL(1), defined
by a polynomial.

Proposition 1.8. X*(GL(1)") ~Z".
We can give the characters explicitly; x(z1, ..., zn) = 7" - - -z~ for m; € Z.

Proposition 1.9. Let G be reductive and G = S - G', where S = R(G) and G’
is the derived group. Then S is a torus and X x (G) is a subgroup of X * (S) with
finite indez.

Proof. We first show that X «(G) = 1 if G is semi-simple. If G is simple (i.e., it has
no proper closed normal subgroup of dimension> 0), then given x : G — GL(1),
kery is a closed normal subgroup. By dimension formula, dimG = dim(Imy) +
dim(kery). Hence dim(kery) > 1. So kerx = G. If G is semi-simple, there is
an isogeny (surjective homomorphism with a finite kernel) H?ZI G; — G, where

G; is simple. Then X*(G) — Hle X*(G;) is an injection. Hence X*(G) =
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1. Suppose G is reductive. Then there exists an isogeny S x G’ — G. Then
X*(G) — X*(S) x X*(G') = X*(9) is an injection with finite index. O

Ezample 1.10. Suppose G = GL(n) = Z - SL(n), where Z = {al,|a € GL(1)}.
Then X*(Z) =< x : al, — a >~ Z. But X*(GL(n)) =< det >, where det is the
character g — det(g). But det(al,) = a™.

1.2 Roots and coroots. et G be an algebraic group. We can define its Lie
algebra, denoted by g. It is the set of left invariant derivations of the algebra of
algebraic functions on G. Rather than defining it abstractly, we show how to find
it in the case when G C GL(n,): Take t such that > = 0. Then g = {X €
M(n,Q)|1+tX € G}. Note that g is a vector space whose dimension is dim G.

Ezamples 1.11. (1) G = SL(n). Then g = {X € M(n)|det(1+tX) =1} ={X €
M(n)|trX = 0}.

(2) G = Sp(2n) = {g € SL(2n)|'gJg=J}. Theng={X € M(n)|*XJ+JX =
0}.
Definition 1.12. We have an adjoint representation Ad : G — End(g), defined
by Ad(g)(X) = gXg~t.

Let T be a maximal torus in G. Then Ad(T) is a set of diagonalizable com-
muting endomorphisms g — g. Hence they are simultaneously diagonalizable.
Eigenvalues are characters of T. Hence we have

g=0\" © BacaslP,

where g = {X € g| Ad(t)(X) = a(t)X}, and a € X*(T), a # 0. Only finitely
many such o’s appear. We call ® the set of roots of G with respect to T.

Ezample 1.13. Let G = Sp(4). Then T = {z(t1,t2) = diag(t1,t2,t5;1,t7")} and

9= {<é f;)}’, where A = (Z ;) VAN = :5} :Z), and B, C are of the
form (Z Z) The roots are {+(e; * eq), +2e1,+2e5}, where ey : z(t1,t3) —

t1,e2 1 z(t1,t2) > t2. Then g, e, = {(A AI)}7 where A = (8 8), 92¢; =

O B 0 b O B 0 0
{<O 0>}’ where B = (0 0)’ 92e; = {(O O)}a where B = (C 0)’

Oeites = {(g g)}, where B = (g 2)

Let N(T), Z(T) be the normalizer and centralizer of T in G. Then Z(T) =T
and W = N(T)/T is finite, called the Weyl group of G relative to T. For s €
N(T), we can define w, : T — T, by w(t) = sts~. It induces an isomorphism
wh : X*(T) — X*(T) by wi(x) = x o ws. We will identify s with w, and w’,.

Let X,(T) = Hom(GL(1),T) be the group of cocharacters. Then there is a
natural pairing <, >: X*(T) x X,(T) — Z. For x € X*(T),p € X,(T), we
define < x,pu >€ Z as follows: x o p : GL(1) — GL(1). Since X*(GL(1)) ~ Z,
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there exists k € Z such that y o u(t) = t*. Define < yx, u >= k. Using this pairing,
we identify X, (T) with Hom(X*(T), Z).

For each o € @, we define the coroot oV € X,(T) as follows: Since o : T —
GL(1), (kera)? C T is a subtorus of codimension one. ((kera)? is the connected
component of the identity of kera.) Let Z, be the centralizer of (kera)? in G. It
is a connected, reductive group with T as a maximal torus. Let G, be the derived
group of Z,. Then G, ~ SL(2) or PGL(2), and G, has a maximal torus T, C T.
Define ¥ : GL(1) —> T, be the unique homomorphism such that < a,a¥ >= 2.

Definition 1.14. Suppose G is reductive and T is a mazimal torus. Then (X*(T), ®, X.(T),®V)
15 called a root datum of G.

Ezamples 1.15. (1) G = GL(n). Let a be a root such that a(diag(t1,...,t,)) =
tit;rll. Then kera = {diag(t1,..,ti—1,tla,t;12,...,t,)}. It is connected. So Z, =
{diag(t1,....ti—1,GL(2),tit2, ..., tn)} and G4 = {diag(1,...,1,SL(2),1,...,1)}. Hence
avV(t)=(1,.,1,t,t71 1, .., 1).

(2) G = Sp(4). Let oy = e1 — e3,ap = 2e2 in Example 1.13. Then oy (t) =
diag(t,t=1,t,t71) and o (t) = diag(1,t,t71,1).

Suppose G is semi-simple, and T is a maximal torus. Let X = X*(T). Then
(X,®, W) is a root system: X is a free module of rank | (I = dimT); ® is finite
subset of X; W is a finite automorphism group of X such that

(1) 0¢ ®;if @ € @, then —a € P

(2) f € € @, and ca € ® for ¢ € Q, then ¢ = +1

(3) To each o € ®, there corresponds w, € W such that wy(x) = x — ¥ (x)«

for x € X. Also wq (@) = @.

(4) Xo(= X ®z Q) is generated by ® as a vector space over Q

(5) W is generated by {wq : a € @}

If G is reductive, then we need to take X = X*(T/S), where S = Z(G)". Since
W is finite, one can introduce W-invariant positive definite symmetric bilinear form
(,) on Xg. (Take any positive definite symmetric bilinear form <, > and define
(:9) = [y S < i wy >)

JFrom the relation (wq(x), wa(x)) = (X, x) and we(x) = x — a¥(x)a, we have
av(x) = % Using this, we can identify o with (j:fl)
wq () = —a and w, leaves fixed the hyperplane H, = {x € Xg : (a, x) = 0}. We
call w, "reflection” or "symmetry” with respect to a.

For o, 8 € @, cop = % € 7Z. Tt is called Cartan integer.

1.3 Classification of root systems. The space Xr — J,cq Ho is a finite union of
disjoint connected components; such a component is called a Weyl chamber. To
each Weyl chamber C?, is associated a linear order in X; o > 0 if (v, x) > 0 for all
x € C° We denote the set of positive roots by @ .

. Also we see that w2 =1,

Definition 1.16. A positive root o is said to be simple if o cannot be expressed in
the form 3+« for B,y € ®,.

We denote the set of simple roots of &, by A. It is called a fundamental system.
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Theorem 1.17 (Main properties of fundamental system).

(1) The fundamental system consists of l linear independent roots o, ..., .
(2) Ewvery root a € ® can be written uniquely in the form

1
a==+ E m; o,
i=1

where m; € Z4 U {0}.
(3) W is generated by {wy, : a; € A}
(4) Every root o € ® can be written in the form

o = wair o 'wail ai07

where oy, ..., ;, € A

(5) W acts simply transitively on the set of Weyl chambers. Namely, there is
a one to one correspondence between fundamental systems of ® and Weyl
chambers.

Lemma 1.18. If o, 8 are two nonproportional roots, and (o, 3) > 0, then a — (3 is
a root.

Proof. Recall that c,g = % € Z. By Cauchy-Schwartz inequality, cogcga < 4.

Hence if (a, 3) > 0, then cop or cgo = 1. If cga =1, a—f = a—cga S = wg(a) € .
The other case is the same. [

Corollary 1.19. For a;, 05 € A, (i, 5) <0, and cq,,q, € {0,—-1,-2,-3}.

Definition 1.20. A root system ® is reducible if ® = &1 U &y, where @, Do are
non-empty subsystems of ® and ®; L Py. A root system @ is called irreducible if
it 18 not reducible.

Given an irreducible fundamental root system A = {ay, .., oy }, we call the matrix
(Cai,a;) Cartan matrix. We can attach Dynkin diagram to A in the following way:
To each vector a; € A, associate a vertex, and connect vertices corresponding to a;
and «; with a single, double, or triple line according to whether cq, o, = —1, -2, —3.
The arrows point from a longer to a shorter vector, when the lengths are different.

The following is a list of the Dynkin diagrams of irreducible fundamental systems
(See [Se| or [Hum)):

Theorem 1.21 (Classification of irreducible root systems).

A (SL(I+1)):0—0—--—0—0
B, (SO@2l+1):0—0—---—0—0=>0
C, (Sp(21): 0—0——+ -+ ——0——0<=0
Dl M
0——0—=-+- —=0——0—0



EG .
01— 02——03——04—05
06
E7 N
01— 09——03——04——05—0g
or
Eg N

01— 02 —03 04— 05 —0g— 07

0g

Fy:01—03<=03—04

Ga: 01€02

Theorem 1.22. There exists a one to one correspondence between irreducible root
systems and simple Lie algebras.

Complex Lie groups attached to the above irreducible root systems have been
known before Chevalley. Chevalley observed that they can be constructed as al-
gebraic groups. The following theorem gives a one to one correspondence between
irreducible root systems and isogeny classes of split simple algebraic groups defined
over a prime field (Assume that it is of characteristic zero).

Theorem 1.23 (Fundamental Theorem of Chevalley). (1) Given a root sys-
tem (X, ®), there exists a connected semi-simple algebraic group G, defined over a
prime field having (X, ®) as its root system (with respect to a split maximal torus
T of G). We denote G by G(X, D).

(2) Suppose (X1, ®), (X2, ®) are two root systems with associated algebraic groups
G1, Ga. Suppose there is an injection p : Xo — X1 such that p is an identity on
®. Then there exists an isogeny ¢ : G1 — Go.

The above group G(X,®) is called ”Chevalley group,” or ”split group”, since
it has a maximal torus which is split over the prime field. These days, any split
reductive groups are called Chevalley groups.

Let (X, ®) be a root system. Let

Xo={A}z = {2}z,

X={®V}) ={x € Xg: (x,a¥) € Z,for all ¥ € ®"}.
X is called the root module of ®; X© is called the weight module of ®. We have
inclusions: Xy C X C XY By the fundamental theorem of Chevalley, there exist

isogenies

G(X° @) — G(X,®) — G(X, D).
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Proposition 1.24. The center of G(X°, ®) is finite and it is isomorphic to X°/X.

Hence given a root system, there exist only a finitely many Chevalley groups in
the isogeny class.

Definition 1.25. The group G(X°, ®) is called simply connected group of type ®.
The group G(Xo,®) is called adjoint group of type ®. (Note that the center of
G(Xo, ®) is trivial.)

1.4 Construction of Chevalley groups: simply connected type. Let ® be a root
system and let g be a semi-simple Lie algebra determined by ®. Hence

g=58 ) ga;

aed

where dim g, = 1 for each a € . Let A = {ay,...,a;} be simple roots; I = dim b.
For each «, let H!, € b such that (H, H.) = «(H) for all H € h. Define H, =
2 ~H! and write H; for H,,.

(a,0)

Theorem 1.26 (Existence of Chevalley basis). Given the H;, i = 1,...,1,

chosen above, one can find E, € g, Fq # 0, for each o € ® such that H;, E,

together form a basis for g relative to which the equations of structure are as follows:

1) [Hy, Hj] =0

2) [Hi, Ey] = coy,aFu

3) [Ew, E_o| = Hy =integral combination of H;’s

4) [Eo, Eg) = £(r + 1)Eq4p if a + B is a root, where r is such that B — ro is
a root, and 3 — (r + 1)« is not a root.

(5) [Ea,Egl=0ifa+B#0 and o+ B # 0 is not a root.

(
(
(
(

When r = 0, all roots in @ have the same lengths and ® is called simply laced root
system. They are root systems of type A—D— E. In this case, we can determine the
sign in (4) easily: Let [Eq, Eg] = sqpEayp if a4+ € ®. Let A= (ca,,0;,) = B+'B
be the Cartan matrix. Here B is an upper triangular matrix. It gives rise to an
integral valued bilinear form B(«, ) such that («, 8) = B(«a) + B(f8, «) and

%(aiaaj)a ifi=y
B(Oéi, aj) = 0, ifi >y
(ai,aj)’ if 4 <j
Then sog = (—1)3(""[3). )
Since E, is nilpotent, the exponential map exp(E,) is well-defined. For t € F,
let eq(t) = exp(tE,) for each o € ®. Let U, = {eq(t) : t € F'}.

Theorem 1.27. The simply connected Chevalley group G = G(X°, ®) is generated
by Uy for all a € ®.

For t € F*, let wo(t) = eq(t)e_a(t™Veq(t) and ha(t) = wa(t)we(1)~t. Then
aV(t) = hqa(t).

Let U be the subgroup of G generated by U, for all « € &, and let T be the
subgroup of G generated by all h,(t), o € ®. Let B be the group generated by U
and T. Then B =T - U (semi-direct product) and TN U = {e}.
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Theorem 1.28. B is a Borel subgroup (mazximal connected solvable subgroup of
G) and T is a mazimal torus.

Ezample 1.29. Suppose g = sl(2). Then ® = {a, —a} and

(0 R (1)
®=(g %) =g 1) wo=(_ g):

We will use the following proposition to reduce many calculations on G to those
of SL(2).

Proposition 1.30. Ifa € @, there exists an injective homomorphism ¢q : SL(2) —
G such that

ba D) =hatn ba(§ 1) =ea0 (0 5) = watt)

Let F' be a p-adic field and O be its ring of integers. Let K be the subgroup
of G(F) generated by {en(t) : t € O,a € ®}. Then K is a maximal compact
subgroup of G(F), and G(F) = KB(F) (Iwasawa decomposition). We usually
denote K by G(0O).

Note that any ¢t € T can be written uniquely ¢ = Hézl ha, (ti), t; € F*. So the
center of G is given by

Hence

l l
Z(G) = {[ ] heus(ta) : J] 7% =1, for all ; € A}
=1 =1

Ezample 1.31. Let G = Spin(2n) be the simply connected group of type D,,. The
simple roots are A = {a; = e1—€3, ..., Q3 = €p—3—€p_2,Qpn_1 = Ep_1 —Ep, Oy, =
en—1 + en}. Then

Z(G) = {H?:_f hai((_l)i)han—1(_t)han (t), and ha,,_, (t)ha, (t) : t* =1}, if nis even
T {hay, () ha, (2R (Db, (83) 1 2 =11, if n is odd.
We set ¢ = hq, _, (—1)hq, (—1), and

= { H?z_12 ha, (1)) ha,_, (—1), if n is even
1722 by (1)) ey, (V=T)ha, (V=1), if n is odd.

Note that ¢ = 22 if n is odd. Hence Z(G) ~ Z/4Z if n is odd, and Z(G) ~
Z/2Z x Z]2Z if n is even. This fact implies that when n is odd, there is, up
to isomorphism, a unique non simply-connected, non-adjoint group of type D,
namely, SO(2n). However, when n is even, there are two non-isomorphic, non
simply-connected, non-adjoint group of type D,,; one is SO(2n) ~ Spin(2n)/{1, c}.
The other is HS(2n) ~ Spin(2n)/{1, z}, the so-called half-spin group.

1.5 Structure of parabolic subgroups. Let G = G(X?, ®) be the simply connected
Chevalley group, which corresponds to a root system ®. Let T be a maximal torus.
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Theorem 1.32. There is a one to one correspondence between Borel subgroups
containing T and fundamental systems A of ®. The correspondence is B = Ba +—
AC P,
Ba=T- [] Ua,
acdy

where @ is the set of positive roots in ® determined by A.
From now on we fix a Borel subgroup B, i.e., a fundamental system A.

Definition 1.33. A subgroup of G which contains a Borel subgroup is called par-
abolic subgroup of G.

Theorem 1.34. There is a one to one correspondence between parabolic subgroups
P containing BA and subset 0 C A. The correspondence is P = Py +— 0 C A;

Py = G(Xg) - Ty - U = MgNp,

where Mg = G(Xg) - Ty is the Levi subgroup of Py, and Ny = U9+ = Haech—zj U,

is the unipotent radical of Py, where ¥ = {0}z N ®,. Here Ty = (Naepker a)°,
the subtorus of T annihilated by 0, and G(X¢) is the subgroup generated by Uy, o €
Yo = {9}2 Nnoé

Lemma 1.35 (additional properties of parabolic subgroups).

(1) My is the centralizer of Ty in G, i.e., Ty is the connected component of the
center of My.

(2) G(X9) is the derived group of My.

(3) Ty NG(X(0)) is finite.

(4) G(X9) is simply connected.

Especially, the Borel subgroup B corresponds to the empty set in A. Also note
that if 61 C 0 C A, then Py, C Py,. If 0 = A — {a} for a € A, P = P, is called a
maximal parabolic subgroup.

Ezamples 1.36. (1) G = Sp(2n); A = {e1 —ea,ea —e3,...,en_1— €n,2e,}. Let 6 =
A—{2e,}. Then T = {diag(ty, ..., tn, t; ..., t7 ")} and Tp = {diag(t,....t,t=1, ...t~ 1)}
Hence Py = MyNg, My = {diag(A,—J,tA""J,) : A € GL(n)}. This is called
Siegel parabolic subgroup.

We need the following three examples for our proof of the functoriality of sym-
metric cube.

(2) (E¢—1 case) Let G be a simply connected group of type Eg. Let § = A—{as}.
Let P = MN and A be the connected component of the center of M. Then
A ={a(t): t € F'}, where

a(t) = hay () hay () R () s (8 s (8 P (£).

By Lemma 1.35, the derived group Mp of M is simply connected, and hence
Mp =~ SL3 x SL3 x SLy. We identify A with GL;. We fix an identification of M p
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and SL3 X SL3 x SLy under which the element hy, (t)hq, (t?) goes to the diagonal
element diag(t,t,t72) of SL3, ha, (t*)ha, (t) to diag(t,t,t=2) of SL3, and hq,(t) to
diag(t,t™1) of SLy. We define a map f: A x Mp — GL; x GL1 x GLy x SL3 x
SLs x SLy by

f:(a(t),z,y,2) — (2,823 2,9, 2).

Now, M ~ (GLy x SL3 x SL3 x SLy)/S, where
S = {(a(t),t*I3,t*I3,°I5) : t° = 1},
We obtain an injection f : M — G L3 X GL3 X GL2 so that
f(has(t)) = (diag(1,1,t), diag(1,1,t), diag(1,t)).
Since f is rational, it induces an injection
f:M(A) — GL3(A) x GL3(A) x GLy(A),

such that M(A)(A*)? is co-compact in GL3(A) x GL3(A) x GL2(A), where (A*)2
is embedded as a center of the first two factors.

(3) (E7—1 case) Let G be a simply connected group of type Er. Let § = A—{ay}.
Let Py = MIN. Then A = {a(t): t € F }, where

a(t) = hay (£2)hay (1) hag (2) hay (82) has (°) hag () hay (£°).

By Lemma 1.35, the derived group M p of M is simply connected, and hence M p ~
SLy x SL3 x SLy. Now we proceed exactly the same way as in Eg — 1 case; under
the identification of M p with SLy x SLgx SLy, M ~ (GL1 x SLy x SL3 xSLy4)/S,
where

S = {(a(t), 151, t* I3, £31,) : t'2 = 1}.

We also construct an injection f: M — GLy X GL3 X GL4 so that

f(ha,(t)) = (diag(1,t), diag(1,1,t), diag(1,1,1,1)).

(4) (D, — 2 case) Let G = Spin(2n) be a split spin group and 0 = A — {ay,—2}.
Let Py = MN: A = {a(t): t € F'}, where

n—2 n

t) = P O ()b, (" Dha, , (7 ha, (t°57), i neven
a =
hay () hay (1) - - hay (P he, (") ha, (t772), if n odd
By Lemma 1.35, the derived group M p of M is simply connected, and hence M p =~

SL,,_9xSLyxSLy. Asin the above, we have, M ~ (GLy; X SL,,_oxSLyxSLs)/S,
where

| {(a(®), e, T I, t" L) 1172 =1}, if n even
{(a(t), t2L,_g,t" 25, 1" 21,) : t2(*=2) = 1}, if n odd
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We obtain an injection f: M — GL,,_2 X GLy X GLy so that

f(ha,_, () = (diag(1,...,1,t), diag(1,t), diag(1,t)).

We need the following example for our proof of the functoriality of symmetric
fourth.

(5) (D, — 3 case) Let G = Spin(2n) be a split spin group and 0 = A — {ay,—3}.
Let Py =MN: A = {a(t): t € F}, where

hay (1) hay (1Y) -+ Bay 5 (2" ha, (2" ha, (") ha, (t"72), if n even

e ), if n odd

= e O (1)~ (s (" (157 Y (1%

By Lemma 1.35, the derived group Mp of M is simply connected, and hence
Mp ~ SL,_3 x SLy. Now, M ~ (GL, X SL,,_3 X SL4)/S, where

{(a(t),t*I,_3,t"31,) : t>(*=3) = 1}, if n even

S = n—3
{(a(t),tl,_3,t = Iy) :t"=3 =1}, if n odd

We obtain an injection f : M — GL,,_3 X GL4 so that

f(ha, 5(t) = (diag(1,...,1,t), diag(1,1,t,t)).
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