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Outline

• Epitaxial Growth
– molecular beam epitaxy (MBE)
– Step edges and islands

• Mathematical models for epitaxial growth
– atomistic: Solid-on-Solid using kinetic Monte Carlo
– continuum: Villain equation
– island dynamics: BCF theory

• Kinetic model for step edge
• Asymptotics

– edge diffusion and line tension (Gibbs-Thomson) boundary 
conditions

• Conclusions
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ABES

PEO
Effusion Cells

MBE Chamber

RHEED

REMS

• substrate temperature 

•surface structure
•morphology
•monolayer thickness

• morphology
• monolayer thickness

• desorbed and scattered flux • In, Ga, Al evaporators
• Valved As, Sb crackers

STM Chamber

Growth and Analysis Facility at HRL
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STM Image of InAs

20nmx20nm

250nmx250nm
1.8 V, Filled States

HRL whole-wafer STM
surface quenched from 450°C, “low As”

Barvosa-Carter, 
Owen, Zinck
(HRL)
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AlSb Growth by MBE

Barvosa-Carter and Whitman, NRL
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Basic Processes in Epitaxial Growth
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(a) deposition (f) edge diffusion
(b) diffusion (g) diffusion down step
(c) nucleation (h) nucleation on top of islands
(d) attachment (i)  dimer diffusion
(e) detachment
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Solid-on-Solid Model

• Interacting particle system 
– Stack of particles above each lattice point

• Particles hop to neighboring points
– random hopping times
– hopping rate D= D0exp(-E/T), 
– E = energy barrier, depends on nearest neighbors

• Deposition of new particles
– random position
– arrival frequency from deposition rate

• Simulation using kinetic Monte Carlo method
– Gilmer & Weeks (1979), Smilauer & Vvedensky, …
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Kinetic Monte Carlo 

• Random hopping from site A� B
• hopping rate D0exp(-E/T), 

– E = Eb = energy barrier between sites
– not �E = energy difference between sites

A

B

�EEb
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SOS Simulation for coverage=.2

Gyure and Ross, HRLGyure & Ross
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SOS Simulation for coverage=10.2
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SOS Simulation for coverage=30.2
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Validation of SOS Model:
Comparison of Experiment and KMC Simulation

(Vvedensky & Smilauer)

Island size density Step Edge Density (RHEED)
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Difficulties with SOS/KMC

• Difficult to analyze
• Computationally slow

– adatom hopping rate must be resolved
– difficult to include additional physics, e.g. strain

• Rates are empirical
– idealized geometry of cubic SOS
– cf. “high resolution” KMC
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High Resolution KMC Simulations 

High resolution KMC (left); STM images (right)
Gyure, Barvosa-Carter (HRL), Grosse (UCLA,HRL)

•InAs

•zinc-blende lattice, dimers

•rates from ab initio computations

•computationally intensive

•many processes

•describes dynamical info (cf. STM)

•similar work

•Vvedensky (Imperial)

•Kratzer (FHI)
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Continuum Theory for Epitaxial 
Growth

• Villain equation (1991) h(x,y,t)= height

• Related work: Ortiz; Kohn; …
• Describes rough growth

– inapplicable to morphology of very thin layers (h=h(t))

• Range of validity is uncertain
– incomplete derivation (dynamic vs.  thermodynamic)

– surface diffusion: E[h] = � �2 ds, no atomistic derivation

22 ( )th h h h F η= −∆ + ∆ + ∆ ∇ + +
surface 
diffusion

deposition 
noise

mean
deposition

nonlinearitydesorption
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Island Dynamics
• Burton, Cabrera, Frank (1951)
• Epitaxial surface

– adatom density �
– continuum in lateral direction, atomistic in growth direction

• Adatom diffusion equation, equilibrium BC, step edge 
velocity

�t=D� � +F
� = �eq

v =D [� �/ �n]

• Line tension (Gibbs-Thomson) in BC and velocity
D � �/ �n = c(� – �eq ) + c �
v =D [� �/ �n] + c �ss

– similar to surface diffusion, since �ss ~ xssss
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Island Dynamics/Level Set Equations

• Variables
– N=number density of islands 
– Γk = island boundaries of height k 

represented by “level set function” ω
Γk (t) = { x : ω(x,t)=k}

– adatom density θ(x,y,t)

• Adatom diffusion equation
�t - D � � = F - dN/dt

• Island nucleation rate
dN/dt = � D �1 � 2 dx

�1 = capture number for nucleation
• Level set equation (motion of Γ )

	 t + v grad 	 = 0
v = normal velocity of boundary Γ

F

D

v
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The Levelset Method

Level Set Function ϕ Surface Morphology

t

ϕ=0

ϕ=0

ϕ=0

ϕ=0
ϕ=1



Level Contours after 40 layers
In the multilayer regime, the level set method produces results
that are qualitatively similar to KMC methods. 
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LS = level set implementation of island dynamics
UCLA/HRL/Imperial group, 
Chopp, Smereka
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Experimental Data for 
Fe/Fe(001),
Stroscio and Pierce, 
Phys. Rev. B 49 (1994)

Stochastic 
nucleation and 
breakup of 
islands
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Kinetic Theory for Step Edge Dynamics
and Adatom Boundary Conditions 
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Step Edge Components

Ω+
Ω-

kρ

kr

ρ

φ

•adatom density θ
•edge atom density �
•kink density (left, right) k
•terraces (upper and lower) Ω
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Diffusion Coefficients
Hopping rate = diffusion coefficient, for bond energy E

DT hopping rate on terrace
DE = DT e-E/T hopping rate along and off of edge
DK = DT e-2E/T hopping rate from kink
DS = DT e-3E/T hopping rate out of a uniform edge

DS

DE

DK

DT
upper 
terrace

lower 
terrace
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BCF Theory

• Equilibrium of step edge with terrace
• Gibbs distributions

� = e-2E/T

	 = e-E/T

k = 2e-E/2T

• Derivation from detailed balance
• BCF includes kinks of multi-heights
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Detailed Balance:
Attachment/Detachment at Edge

edge atom 
 terrace adatom: 
DE 	 = DT �

	

�DE

DT
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Detailed Balance:
Attachment/Detachment at Kinks

kink 
 edge atom: 
DK k = DE k 	

k

k 	

DK

DE
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Detailed Balance:
Nucleation/Breakup of Kink Pairs

kink pair (“island”) 
 edge atom pair
DK (1/4) k2 = DE 	2

k k 	 	
DK DE
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Detailed Balance:
Creation/Filling of Holes along Edge

kink pair (“hole”) + edge atom 

 straight step: 

DE (1/4) k2 	 = DS

Filling in hole is key step: completion of a row

DS DE

k k
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Detailed Balance

edge atom 
 terrace adatom: 
DE 	 = DT �

kink 
 edge atom: 
DK k = DE k 	

kink pair (“island”) 

 edge atom pair:

DK (1/4) k2 = DE 	2

kink pair (“hole”) + edge atom 

 straight step: 

DE (1/4) k2 	 = DS
Conclusions:

� = DK / DT = e-2E/T

	 = DK / DE = e-E/T

k = 2(DS / DK )1/2= 2e-E/2T

DS DE = DK
2
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Equilibrium Solution

•Solution for F=0 (no growth)
•Same as BCF theory
•DT, DE, DK are diffusion 
coefficients (hopping rates) on 
Terrace, Edge, Kink in SOS model

Comparison of results from theory(-)
and KMC/SOS (�)
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Kinetic Steady State

• Deposition flux F

•Vicinal surface with terrace width L

•No detachment from kinks or step edges, on growth time scale

•detailed balance not possible

• Advance of steps is due to attachment at kinks

•equals flux to step f = L F

L

F

f
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Detailed Balance

edge atom 
 terrace adatom: 
DE 	 = DT �

kink 
 edge atom: 
DK k = DE k 	

kink pair (“island”) 

 edge atom pair:

DK (1/4) k2 = DE 	2

kink pair (“hole”) + edge atom 

 straight step: 

DS = DE (1/4) k2 	
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Detailed Balance

edge atom 
 terrace adatom: 
DE 	 = DT �

kink 
 edge atom: 
DK k = DE k 	

kink pair (“island”) 

 edge atom pair:

DK (1/4) k2 = DE 	2

kink pair (“hole”) + edge atom 

 straight step: 

DS = DE (1/4) k2 	

�������
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Kinetic Steady State:
Flux to Step = Flux to Kinks

flux to kinks 
 flux to edge :
DE k 	 = f = L F

f

k 	
DE
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Kinetic Steady State:
Kink Nucleation Rate = Hole Fill-in Rate

creation of kink pairs (“island”) 

 filling in holes:

DE 	2 = DE (1/4) k2 	

	 	DE DE 	

k k
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Kinetic Steady State

edge atom 
 terrace adatom: 
DE 	 = DT �

flux to kinks 
 flux to edge : 
DE k 	 = f = L F

creation of kink pairs (“island”) 

 filling in holes:

DE 	2 = DE k2 	

Conclusions:
� = (DE / DT ) 	
	 = k2

k = (L F / DE )1/3

F= deposition flux, L= terrace width



Fields Institute 2/14/03

Kinetic Steady State

•Solution for F>0
•k >> keq
•Pedge=Fedge/DE “edge Peclet #”

= F L / DE Comparison of scaled results from steady state (-),
BCF(- - -), and KMC/SOS (���) for L=25,50,100,

with F=1, DT=1012
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Unsteady Edge Model 
from Atomistic Kinetics

• Evolution equations for 	, �, k  
�t � - DT �

2 � = F on terrace
�t 	 - DE �s

2 	 = f+ + f- - f0 on edge
�t k - �s (w ( kr - k �))= 2 ( g - h ) on edge

• Boundary conditions for � on edge from left (+) and right (-)
– v �+ + DT n·� � =  - f+
– v �+ + DT n·� � =    f-

• Variables
– � = adatom density on terrace
– 	 = edge atom density
– k = kink density 

• Parameters
– DT, DE, DK, DS = diffusion coefficients for terrace, edge, kink, solid

• Interaction terms
– v,w = velocity of kink, step edge
– F, f�, f0   = flux to surface, to edge, to kinks
– g,h = creation, annihilation of kinks
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Adatom and Kink Dynamics 
on a Step Edge

Attachment at kinks 
� kink velocity w

Kink pair creation 
� kink creation rate g

Kink pair collision 
� kink loss rate h

Reverse processes do not occur in typical MBE growth 
� no detailed balance � nonequilibrium

top view of step edge
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Constitutive relations
• Geometric conditions for kink density

– kr + k�= k
– kr - k �= - tan 

• Velocity of step
– v = w k cos 

• Flux from terrace to edge, 
– f+ = DT �+ - DE 	
– f- = DT �- - DE 	

• Flux from edge to kinks
– f0 = v(	 � + 1)

• Microscopic equations for velocity w, creation rate g and 
annihilation rate h for kinks 
– w= 2 DE 	 + DT (2�+ + �-) – 5 DK

– g= 2 (DE 	 + DT (2�+ + �-)) 	 – 8 DK kr k�
– h= (2DE 	 + DT (3�+ + �-)) kr k� – 8 DS
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Asymptotics for Large D/F
• Assume slowly varying kinetic steady state along island boundaries

– expansion for small “Peclet number” f / DE = �3

– f is flux to edge from terrace

• Distinguished scaling limit 
– k = O(�)
– 	 = O(�2)
– ϕ = O(�2) = curvature of island boundary = X y y

– Y= O(�-1/2) = wavelength of disurbances

• Results at leading order
– v = (f+ + f- ) + DE 	yy

– k = c3 v / 	
– c1 	2 - c2 	-1 v = (	 X y ) y

• Linearized formula for 	
– 	 = c3 (f+ + f- )2/3 – c4 ϕ

curvature

edge diffusion
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Macroscopic Boundary Conditions
• Island dynamics model

– �t – DT � � = F   adatom diffusion between step edges
– X t = v velocity of step edges

• Microscopic BCs for �
DT n·grad � =   DT � - DE 	 � f 

• From asymptotics
– θ*= reference density = (DE / DT) c1((f+ + f- )/ DE)2/3

– � = line tension = c4 DE

• BCs for � on edge from left (+) and right (-), step edge velocity

± DT n·grad � =   DT (� - θ* ) + � �
v =  (f+ + f- ) + c (f+ + f- ) ss + � �ss

detachment
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Conclusions

• Kinetic model for step edge
– kinetic steady state � BCF equilibrium
– validated by comparison to SOS/KMC 

• Atomistic derivation of Gibbs-Thomson
– includes effects of edge diffusion, curvature, detachment

• Open problems
– derivation based on distinguished limit, rather than physical 

regime
– derivation of surface diffusion


