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The Problem

* Given number n, test if it is prime
efficiently.
Efficiently = in time a polynomial in
humber of digits
= (log n)* for some constant c

PRIMES = set of all prime humbers



The Trial Division Method

Try dividing by all numbers up to nl/2,

- Already known since ~230 BC (Sieve of
Eratosthenes)

- takes exponential time: Q(nl/?).

- Also produces a factor of n when it is
composite.



Fermat's Little Theorem

if nis prime then for any a:
a" = a (mod n).

+ It is easy to check:

- Compute a?, square it to a*, square it to
ad, ..

- Needs only O(log n) multiplications.



A Potential Test

- For a "few" a's test if a" = a (mod n);

+ if yes, output PRIME else output
COMPOSITE.

- This fails!

- Forn=561=3 * 11 * 17, all d's satisfy
the equationl!



PRIMES in NP n coNP

* A trivial algorithm shows that the
problem is in coNP: guess a factor of
n and verify it.

* In 1974, Vaughan Pratt designed an
NP algorithm for testing primality.



PRIMES in P (conditionally)

+ In 1973, Miller designed a test based
on Fermat's Little Theorem:

- Tt was efficient: O(log* n) steps

- It was correct assuming Extended
Riemann Hypothesis.



PRIMES in coRP

- Soon after, Rabin modified Miller's
algorithm to obtain an unconditional
but randomized polynomial time
algorithm.

- This algorithm might give a wrong answer
with a small probability when n is
composite.

» Solovay-Strassen gave another
algorithm with similar properties.



PRIMES in P (almost)

+ In 1983, Adleman, Pomerance, and
Rumely gave a deterministic algorithm
running in time (log n)clegloglogn,



PRIMES in RP

»+ In 1986, Goldwasser and Kilian gave a
randomized algorithm that

- works almost always in polynomial time

- errs only on primes.

+ In 1992, Adleman and Huang improved
this to an algorithm that is always
polynomial time.



Our Contribution

We provide the first deterministic
and unconditional polynomial-time
algorithm for primality testing.



Main Idea

+ Generalize Fermat's Little Theorem:

- Ring Z/nZ does not seem to have nice
structure to exploit.

- So extend the ring to a larger ring in the
hope for more structure.

* Consider polynomials modulo n and
Xr -1, or the ring Z/nZ[X]/(X"-1).



Generalized FLT

If nis prime
then for any a:
(X +a)"= X"+a (mod n, X"-1).

» Potential test: for a "small” r and a
“few" a's, test the above equation.



It Works (Almost)

- We prove:
If
(X +a)"= X"+ a (mod n, X"-1)
for every O<a< 2 rlogn
and for suitably chosen "small” r
then

either n is a prime power or has a prime
divisor less than r



The Algorithm

*  Input n.

1. Output COMPOSITE if h=mk, k> 1.

2. Find the smallest number r such that
Or'(n) > 4 (Iog n)Z. O.(n) = order of n modulo r.

3. If any number < r divides n, output
PRIME/COMPOSITE appropriately.

4. For every a<2r log h:

- If (X+a)"= X"+ a (mod n, X" - 1) then output
COMPOSITE.

5. Output PRIME.




Correctness

» If the algorithm outputs COMPOSITE, n

must be composite:

- COMPOSITE instepl =>n=mk k>1,

- COMPOSITE in step 3 = a number < r divides n.

- COMPOSITE in step 4 = (X+a)" # X" + a (mod n,
Xr-1) for some a.

* If the algorithm outputs PRIME in step 3,

nis a prime humber < r.



When Algorithm Outputs
PRIME in Step 5

* Then (X+a)" = X"+ a (mod n, X"-1) for
O<a<2Arlogn.

+ Let prime p | n.

* Clearly, (X+a)" = X"+ a (mod p, Xr-1)
too for 0<a < 2rlogn.

» And of course, (X+a)P = XP + a (mod p,
Xr-1) (according to generalized FLT)



Introspective Numbers

* We call any humber m such that g(X)"
= g(X™) (mod p, Xr-1) an introspective
number for g(X).

*+ S0, 1, pand n are introspective
numbers for X+a for 0<a <2 +r log n.



Introspective Numbers Are
Closed Under *

Lemma: If s and t are introspective for
g(X),soiss * t.

Proof:
g(X)s' = g(X3)' (mod p, X" - 1), and
g(X?)" = g(X") (mod p, X" - 1)
= g(Xs") (mod p, Xr-1).



So There Are Lots of Theml
LetI={n*pili, j=0}

+ Every min I is introspective for X+a
for0<a<2Arlogn.



Introspective Numbers Are
Also For Products

Lemma: If m is intfrospective for both
g(X) and h(X), then it is also for g(X)
* h(X).

Proof:

(g(X) * h(X))™ = g(X)™ * h(X)™
= g(X™) * h(X"™) (mod p, X"-1)



So Introspective Numbers
Are For Lots of Products!

*Let Q= { Hazl, 2\r logn (X + a)ea | €y 2 O}.

+ Every m in I is introspective for
every g(X) in Q|

* So there are lots of introspective
nhumbers for lots of polynomials.



Low Degree Polynomials in Q

+ Let t=0.(n,p).

+ Let Q,, be set of all polynomials in Q of
degree < t.

- There are > n2V* distinct polynomials in Q,:
- Consider all products of X+a's of degee < t.

t—1+2Vrlogn

- There ar'e[ m,ogn_l] > n?t of these (since p = r and
V1> 2 log n).



Finite Fields Facts

» Let h(X) be an irreducible divisor of
rth cyclotomic polynomial C.(X) in the
ring F,[X]:

- C.(X) divides Xr-1.

- Polynomials modulo p and h(X) form a
field, say F.

- X'#XlinFforO<izj<r.



Moving to Field F

» Since h(X) divides Xr-1, equations for
intfrospective numbers continue to
hold in F.

|| {X™"| meI}||=1sinceO.(np)-="1.

* We now argue over F.



Q,, injects into F

- Let f(X), g(X) in Q.. T(X) = g(X).

. I £(X) = g(X) in the field F then
* For every m in I, f(X™) = f(X)m = g(X)" =
g(X™) in F.

» So polynomial P(Y) = f(Y) - g(Y) has t roots in
F.

» Contradiction since degree of P(Y) is < t.



Completing the Proof

+ There must be a, b, ¢, d <t such that:
(a,b) # (¢,d) and
na* pb (=s)=nc* pd (= s’) (mod r)
- Since O.(h,p) = t.
» Let g(X) be any polynomial in Q.
» Then modulo (p, X"-1):
g(X)s = g(Xs) [since s is introspective]

= 9()(5) [since s = s' (mod r)]
= g(X)* [since s'is introspective]



Proof Contd.

» Therefore, g(X) is a root of the
polynomial P(Y) = Y5 - ¥ in the field F.

- Since Q,,,, has more than n2't
polynomials in F, P(Y) has more than
n2* roots in F.

. However, max{s,s'} < n?",

* Therefore, s = s' implying that n = p®
for some e.



The Choice of r

+ We need r such that O.(n) > 4 (log n)>.
» Any r such that O.(n) <4 (log n)? must
divide

Hk:l, 4 log2n (nk_l) < nlé log4n — 216 |og5n.

- LCM of first m numbers is at least 2m (for
m>7).

+ Therefore, there must exist an r that we
desire <16 (log n)® + 1.



Remarks

* Our algorithm is impractical - its
running time is O~(log!®°n) provably
and O~(log®n) heuristically.

+ To make it practical, one needs to
bring the exponent down to 4 or less.

» As of now, best known running time is
O~(log®n) [Lenstra & Pomerance].



Further Improvement?

» Conjecture: If n# 1 (modr) for some
r > loglog n and (X-1)" = X" -1 (mod n,
X" - 1) then n must be a prime power.

* Yields a O~(log3n) time algorithm.



