PRIMES is in P

Manindra Agrawal
Neeraj Kayal
Nitin Saxena
Dept of CSE, IIT Kanpur

The Problem

• Given number n, test if it is prime efficiently.

Efficiently = in time a polynomial in number of digits

= $(\log n)^c$ for some constant c

PRIMES = set of all prime numbers

The Trial Division Method

Try dividing by all numbers up to $n^{1/2}$.

- Already known since ~230 BC (Sieve of Eratosthenes)
- takes exponential time: $\Omega(n^{1/2})$.
- Also produces a factor of n when it is composite.

Fermat's Little Theorem

if n is prime then for any a: $a^n = a \pmod{n}$.

- · It is easy to check:
 - Compute a^2 , square it to a^4 , square it to a^8 , ...
 - Needs only O(log n) multiplications.

A Potential Test

- For a "few" a's test if aⁿ = a (mod n);
- if yes, output PRIME else output COMPOSITE.
 - This fails!
 - For n = 561 = 3 * 11 * 17, all a's satisfy the equation!!

PRIMES in NP \(\cappa\) coNP

- A trivial algorithm shows that the problem is in coNP: guess a factor of n and verify it.
- In 1974, Vaughan Pratt designed an NP algorithm for testing primality.

PRIMES in P (conditionally)

- In 1973, Miller designed a test based on Fermat's Little Theorem:
 - It was efficient: O(log4 n) steps
 - It was correct assuming Extended Riemann Hypothesis.

PRIMES in coRP

- Soon after, Rabin modified Miller's algorithm to obtain an unconditional but randomized polynomial time algorithm.
 - This algorithm might give a wrong answer with a small probability when n is composite.
- Solovay-Strassen gave another algorithm with similar properties.

PRIMES in P (almost)

• In 1983, Adleman, Pomerance, and Rumely gave a deterministic algorithm running in time (log n)^{c log log log n}.

PRIMES in RP

- In 1986, Goldwasser and Kilian gave a randomized algorithm that
 - works almost always in polynomial time
 - errs only on primes.
- In 1992, Adleman and Huang improved this to an algorithm that is always polynomial time.

Our Contribution

We provide the first deterministic and unconditional polynomial-time algorithm for primality testing.

Main Idea

- · Generalize Fermat's Little Theorem:
 - Ring Z/nZ does not seem to have nice structure to exploit.
 - So extend the ring to a larger ring in the hope for more structure.
- Consider polynomials modulo n and X^r - 1, or the ring Z/nZ[X]/(X^r-1).

Generalized FLT

If n is prime then for any a: $(X + a)^n = X^n + a \pmod{n, X^r-1}.$

 Potential test: for a "small" r and a "few" a's, test the above equation.

It Works (Almost)!

· We prove:

If $(X + a)^n = X^n + a \pmod{n, X^{r}-1}$ for every $0 < a < 2 \sqrt{r \log n}$ and for suitably chosen "small" r then either n is a prime power or has a prime divisor less than r

The Algorithm

- · Input n.
- 1. Output COMPOSITE if n = mk, k > 1.
- 2. Find the smallest number r such that $O_r(n) > 4 (\log n)^2$. $O_r(n) = \text{order of n modulo r.}$
- 3. If any number < r divides n, output PRIME/COMPOSITE appropriately.
- 4. For every $a \le 2 \sqrt{r \log n}$:
 - If $(X+a)^n \neq X^n + a \pmod{n}$, $X^r 1$ then output COMPOSITE.
- 5. Output PRIME.

Correctness

- If the algorithm outputs COMPOSITE, n must be composite:
 - COMPOSITE in step 1 \Rightarrow n = m^k, k > 1.
 - COMPOSITE in step 3 \Rightarrow a number < r divides n.
 - COMPOSITE in step $4 \Rightarrow (X+a)^n \neq X^n + a \pmod{n}$, $X^r-1)$ for some a.
- If the algorithm outputs PRIME in step 3, n is a prime number < r.

When Algorithm Outputs PRIME in Step 5

- Then $(X+a)^n = X^n + a \pmod{n}$, X^{r-1} for $0 < a \le 2 \sqrt{r \log n}$.
- · Let prime p | n.
- Clearly, $(X+a)^n = X^n + a \pmod{p}$, X^{r-1}) too for $0 < a \le 2 \sqrt{r} \log n$.
- And of course, $(X+a)^p = X^p + a \pmod{p}$, X^r-1 (according to generalized FLT)

Introspective Numbers

• We call any number m such that $g(X)^m$ = $g(X^m)$ (mod p, X^r -1) an introspective number for g(X).

• So, 1, p and n are introspective numbers for X+a for $0 < a \le 2 \sqrt{r \log n}$.

Introspective Numbers Are Closed Under *

Lemma: If s and t are introspective for g(X), so is s * t.

Proof:

```
g(X)^{st} = g(X^s)^t \pmod{p}, X^r - 1, and g(X^s)^t = g(X^{st}) \pmod{p}, X^{sr} - 1
= g(X^{st}) \pmod{p}, X^r - 1.
```

So There Are Lots of Them!

• Let $I = \{ n^i * p^j \mid i, j \ge 0 \}.$

• Every m in I is introspective for X+a for $0 < a \le 2 \sqrt{r \log n}$.

Introspective Numbers Are Also For Products

Lemma: If m is introspective for both g(X) and h(X), then it is also for g(X) * h(X).

Proof:

$$(g(X) * h(X))^m = g(X)^m * h(X)^m$$

= $g(X^m) * h(X^m) \pmod{p, X^r-1}$

So Introspective Numbers Are For Lots of Products!

• Let Q = {
$$\prod_{a=1, 2 \vee r \ logn} (X + a)^{e_a} | e_a \ge 0$$
 }.

- Every m in I is introspective for every g(X) in Q!
- So there are lots of introspective numbers for lots of polynomials.

Low Degree Polynomials in Q

- Let $t = O_r(n,p)$.
- Let Q_{low} be set of all polynomials in Q of degree < t.
- There are > $n^{2\sqrt{t}}$ distinct polynomials in Q_{low} :
 - Consider all products of X+a's of degee < t.
 - There are $\binom{t-1+2\sqrt{r\log n}}{2\sqrt{r\log n-1}}$ > $n^{2\sqrt{t}}$ of these (since $p \ge r$ and \sqrt{t} > 2 log n).

Finite Fields Facts

- Let h(X) be an irreducible divisor of r^{th} cyclotomic polynomial $C_r(X)$ in the ring $F_p[X]$:
 - $C_r(X)$ divides $X^{r}-1$.
 - Polynomials modulo p and h(X) form a field, say F.
 - $X^i \neq X^j$ in F for $0 \leq i \neq j < r$.

Moving to Field F

- Since h(X) divides X^r-1, equations for introspective numbers continue to hold in F.
- $|| \{X^m | m \in I\} || = t \text{ since } O_r(n,p) = t.$
- · We now argue over F.

Q_{low} injects into F

- Let f(X), g(X) in Q_{low} , $f(X) \neq g(X)$.
- If f(X) = g(X) in the field F then
 - For every m in I, $f(X^m) = f(X)^m = g(X)^m = g(X^m)$ in F.
 - So polynomial P(Y) = f(Y) g(Y) has t roots in F.
 - Contradiction since degree of P(Y) is < t.

Completing the Proof

- There must be a, b, c, $d \le \sqrt{t}$ such that: $(a,b) \ne (c,d)$ and $n^a * p^b (= s) = n^c * p^d (= s') \pmod{r}$ - Since $O_r(n,p) = t$.
- Let g(X) be any polynomial in Q_{low} .
- Then modulo (p, X^r-1):

$$g(X)^s = g(X^s)$$
 [since s is introspective]
= $g(X^{s'})$ [since $s = s' \pmod{r}$]
= $g(X)^{s'}$ [since s' is introspective]

Proof Contd.

- Therefore, g(X) is a root of the polynomial $P(Y) = Y^s Y^{s'}$ in the field F.
- Since Q_{low} has more than $n^{2\sqrt{t}}$ polynomials in F, P(Y) has more than $n^{2\sqrt{t}}$ roots in F.
- However, $\max\{s,s'\} \leq n^{2\sqrt{t}}$.
- Therefore, s = s' implying that $n = p^e$ for some e.

The Choice of r

- We need r such that $O_r(n) > 4 (\log n)^2$.
- Any r such that $O_r(n) \le 4 (\log n)^2$ must divide

$$\prod_{k=1, 4 \log^2 n} (n^k-1) < n^{16 \log^4 n} = 2^{16 \log^5 n}$$
.

- LCM of first m numbers is at least 2^m (for m > 7).
- Therefore, there must exist an r that we desire $\leq 16 (\log n)^5 + 1$.

Remarks

- Our algorithm is impractical its running time is $O^{\sim}(\log^{10.5}n)$ provably and $O^{\sim}(\log^6n)$ heuristically.
- To make it practical, one needs to bring the exponent down to 4 or less.
- As of now, best known running time is O[~](log⁶n) [Lenstra & Pomerance].

Further Improvement?

• Conjecture: If $n \ne 1 \pmod{r}$ for some $r > \log\log n$ and $(X-1)^n = X^n - 1 \pmod{n}$, $X^r - 1$ then n must be a prime power.

Yields a O[~](log³n) time algorithm.