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• The origins of the use of set theoretic techniques in analysis go
back to Cantor who introduced ordinal numbers and the derived
set operation in his study of trigonometric series and the structure
of sets of uniqueness. (A set is called a set of uniqueness if the
only trigonometric series converging to zero on its complement is
the trivial one.)
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• The origins of the use of set theoretic techniques in analysis go
back to Cantor who introduced ordinal numbers and the derived
set operation in his study of trigonometric series and the structure
of sets of uniqueness. (A set is called a set of uniqueness if the
only trigonometric series converging to zero on its complement is
the trivial one.)

• Other mileposts include the construction of Lebesgue measure and
the discovery of non-measurable sets;

• Suslin’s detection of an error in an argument of Lebesgue and his
subsequent proof that analytic sets (namely, projections of Borel
sets) need not be Borel;

• The proof that analytic sets are measurable and a closer analysis
of the rest of the projective hierarchy carried out by Suslin, Lusin,
Alexandroff and others;

• and, of course, the Hausdorff-Banach-Tarski paradox.
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• The re-invigourated interaction between set theory and analysis
of the last 30 years began with the realization measurability and
other regularity properties of sets in the projective hierarchy were
connected to the theory of large cardinal and generic reals over
inner models ...
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• The re-invigourated interaction between set theory and analysis
of the last 30 years began with the realization measurability and
other regularity properties of sets in the projective hierarchy were
connected to the theory of large cardinal and generic reals over
inner models ... thus explaining the lack of progress since the work
of Lusin.

• However, recently set theoretic techniques have been used to attain
absolute results.
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1 Planar geometry

• S. Jackson and D. Mauldin: There is a set S ⊆ R2 such that
|S ∩ L| = 1 for every isometric copy L of Z2. Such sets will be
called Steinhaus sets since the question was first raised by him.
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1 Planar geometry

• S. Jackson and D. Mauldin: There is a set S ⊆ R2 such that
|S ∩ L| = 1 for every isometric copy L of Z2. Such sets will be
called Steinhaus sets since the question was first raised by him.

• A reasonable first try is to enumerate all isometric copies of the
integer lattice and proceed by transfinite induction... but obstacles
can arise:

• There is a set of 17 points in the plane that can not be extended to
meet Z2 except by adding the third corner of a right angle triangle
with integer legs:
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• Jackson and Mauldin get around this by a clever inductive strategy
as well as an analysis of mechanical linkages, Gröbner bases and
some intricate number theory.
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• Jackson and Mauldin get around this by a clever inductive strategy
as well as an analysis of mechanical linkages, Gröbner bases and
some intricate number theory.

• Exercise: A. Miller and W. Weiss: There is no Steinhaus set for a
square.

• Open Question: Is there a Borel set in the plane meeting each line
at precisely 2 points?
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• P. Koszmider: There is an infinite, separable, compact Hausdorff
space K for which the Banach space C(K) of all continuous real-
valued functions with the supremum norm is not isomorphic to any
of its proper subspaces nor any of its proper quotients.
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of its proper subspaces nor any of its proper quotients.

• P. Koszmider: Assuming the continuum hypothesis, there is an in-
finite, separable, connected, compact Hausdorff space K for which
the Banach space C(K) of all continuous real-valued functions with
the supremum norm has few operators in the sense that every lin-
ear bounded operator T on C(K) is of the form gI + S where g is
in C(K) and S is weakly compact.

• This gives the first example of a C(K) space which is indecompos-
able and the first example of a C(K) space which is not isomorphic
to any C(K ′) for K ′ zero-dimensional.

• The methods used for these results are not Ramsey theoretic but
have their roots in transfinite inductive constructions of Boolean
algebras.
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3 Classifying finite rank abelian groups

• If E and F are Borel equivalence relations on standard Borel spaces
X and Y then define E ≤B F if and only if there is a Borel map
Φ : X → Y such that xEy if and only if Φ(x)FΦ(y).
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• Hence the space of all torsion free abelian groups of rank n can
be considered to be a closed subset of P(Q) with the usual Cantor
(pointwise) topology.

• Moreover, the isomorphism equivalence relation is a Borel relation.

• If G is a torsion free abelian group, 0 6= x ∈ G and p is a prime
then the p-height of x is the supremum of all n such that x = ypn

for some y ∈ G. Denote this by χx(p).

• It can be shown that for any x and y in G for all but finitely many
primes p, χx(p) = χy(p).

• Let χ(G) be the equivalence class of all functions from the primes
to N∪{∞} which agree with χx at all but finitely many primes for
some (any) non-identity x ∈ G.

• Baer has shown that if G and H are rank 1 torsion free abelian
groups then G and H are isomorphic if and only if χ(G) = χ(H).
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• G. Hjorth and S. Thomas If ≡n denotes the isomorphism equiva-
lence relation on subgroups of Qn then≡n≤B≡n+1 but≡n+1 6≤B≡n.
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• G. Hjorth and S. Thomas If ≡n denotes the isomorphism equiva-
lence relation on subgroups of Qn then≡n≤B≡n+1 but≡n+1 6≤B≡n.

• The proof uses notions of descriptive set theory and some deep
results of Margulis and Zimmer about group actions in Ergodic
theory.
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