Partial Delaunay triangulation and Bluetooth scatternet formation

Xiang-Yang Li Ivan Stojmenovic

Ivan@site.uottawa.ca

www.site.uottawa.ca/~ivan

Bluetooth - piconet

- Short-range
- Master-slave
- Frequency hopping
- PICONET = master + K slaves, K≤7
- Additional slaves must be parked

Bluetooth - scatternet

Connect piconets into scatternet

Avoid master-slave bridges

Bridges participate in piconets on time division basis

Minimize number of slave roles

Scatternet by growing tree

- Ramachandran, Kapoor, Sarkar, Aggarwal 2000: grow tree from root, master not always directly connected to its slave
- Zaruba, Basagni, Chlamtac 2001:
 grow tree from root, at most 5 slaves per master;
 if >5, select two connected slaves, link them, and
 disconnect one;
 Multiple blueroots extension
- Communication overhead and Scatternet maintenance?
- Salonidis, Bhagwat, Tassiulas, LaMaire 2001: centralized, max 36 nodes
- Law, Mehta, Siu 2001: single-hop networks (complete graph)

Clustering based scatternet formation

- Basagni, Chlamtac, Petrioli 2001
- Detect neighboring nodes by paging and scanning
- Apply clustering process
- Clusterheads = masters
- Nodes in a cluster = slaves
- Connect clusters = bridge piconets
- degree (number of slaves) not limited to 7
- parking and unparking process ?
- Maintenance is not localized chain effect?

Neighbor discovery in Bluetooth

- Each node decides with probability 0.5 between inquiry and inquiry-scan modes
- Senders and receivers change frequencies in mutually random pattern (? 32 frequencies)
- If sender and receiver are on the same frequency at some time, they discover each other, and establish master-slave relation
- In multi-hop networks, overall connectivity established quickly, but full awareness of all neighbors is slow

Scatternet by random key clustering

- Wang, Thomas, Haas 2002
- Guerin, Kim, Sarkar 2002
- Node decides to be master at random
- and then 'slaves' up to seven neighboring nodes
- Connect scatternet by bridge piconets
- No bridge piconet, disconnected scatternet?

Degree limited connected scatternet formation

- Li, Stojmenovic 2001 clustering based
- Stojmenovic 2002 dominating set based
- *Phase I* = create unit graph and construct a planar connected structure in localized manner
- *Phase II* = eliminate some edges in the planar structure to limit the degree of each node to 7
- *Phase III* = decide master-slave roles between two nodes of each edge in the structure
- Only phase III differs in clustering vs. dominating set based formation; planar structure is optional

Scatternet formation – phase I

Assumption: Each node is aware of its position and learns position of all neighbors within transmission radius

Construct planar structure in localized manner:

Gabriel graph GG, Relative neighborhood graph RNG,

Partial Delaunay triangulation PDT

Gabriel graph

Gabriel graph GG(S) contains an edge (U,V) iff the disk with diameter (U,V) contains no other point from S

Computing GG from unit graph requires no message exchange

Gabriel graph properties

Planar – no two edges intersect

Connected - Contains MST (minimal spanning trees)

Unit graph contains MST

Planar graph with n nodes has at most 3n-6 edges

Average degree of a planar graph is < 6

RNG has average degree < 2.4 = too sparse

RNG is subset of GG

Intersection of GG and unit graph is connected and planar

Partial Delaunay Triangulation

Li, Stojmenovic 2001 RNG \subseteq GG \subseteq PDT \subseteq DT

Delaunay Traingulation = dual Voronoi diagram

UV in DT iff there exist a circle with chord UV without other

nodes inside it

Test disk with diameter UV:

If empty then UV in PDT

If nodes inside disk on both sides then not in PDT

Find smallest angle on both sides of UV

If together $\geq \pi$ then not in PDT

If together $<\pi$ then in PDT iff both are neighbors, using 1-hop or 2-hop info

PDT= portion of DT which can be decided locally

Yao graph

k=7

Divide into k equal cones around u

Find closest point in each cone, if any

Limiting degrees – cluster based

Phase 2: Applied on **active** nodes = nodes with highest keys among undecided neighbors

Deciding master-slave roles

- -Key= Bluetooth ID (one-hop neighbor discovery)
- -Key= (degree, ID) (two-hop neighbor information needed)
- -Active node decides on roles on each undeleted edge:
- -Higher original key, or
- -Clustering based: clusterhead= master, border node slave and master role given to other neighbor, which can be clusterhead or the second node for two-node gateway piconet

Yao construct preserves connectivity

- •SSort all edges of unit, GG or RNG by key=(length, survive), survive=0 if bi-directional in Yao, =1 if not
- •CConstruct MST by considering edges in increasing order, include if no cycle created

If AB and BA not in Yao then \exists C, AB \leq AC, BC < AB \Rightarrow BC, AC already considered for MST and connected, AB not needed in MST IF AB is directional then \exists path between them consisting of shorter edges and an edge of same length but bi-directional (proof involved) \Rightarrow AB not needed in MST

Future work

- Experiments
- Bluetooth scatternet formation without position information
- Routing in scatternets
- Power efficient scatternets
- Denser planar graphs?
- Neighbor discovery and non-unit graphs
- Scheduling, capacity, ...
- Three-dimensional scatternets

- Ivan Stojmenovic
- ivan@site.uottawa.ca
- www.site.uottawa.ca/~ivan