Adaptive Topology Discovery in Hybrid Wireless Networks

Ranveer Chandra
Cornell University

Joint work with Christof Fetzer and Karin Högstedt
AT&T Labs-Research

Problem Description

- Hybrid Wireless Network:
 - Ad hoc network with slow moving nodes
 - Presence of at least one relatively static node
- Nearly all the links are bidirectional
- A coordinator wants to know the topology of the network.
 - All the nodes
 - All the links

Hybrid Wireless Network

Applications: Home, office networks, mesh networking

Issues In Ad Hoc Networks

- Communication is expensive
- Unreliable links
- No a priori knowledge of neighbors
- Possibility of unidirectional links
- Links could become stale due to mobility

Outline of the Talk

- Introduction
- Basic protocol
- Enhancements for:
 - Unreliable broadcasts
 - Low mobility (low overhead)
 - High mobility (overhead depends on mobility)
- Performance
- Conclusion

Protocol Overview

- Diffusion Phase
 - Propagates request through network
 - Establishes neighborhood information
 - Builds tree structure
- Gathering Phase
 - Propagates neighborhood information back along tree structure

Node Or Link Failures

- Node sends its response if:
 - it is a child, or
 - all its children have replied, or
 - it waited for (height depth)*(b_time + u_time)
 amount of time.

(height is the total height of the tree, depth is the current distance to the root b_time is the time to bcast a message to a nbr u time is the time to unicast a message to a nbr)

Bad Performance

Using GloMoSim:

- 200m x 200m
- 50 nodes
- stationary

⇒ Broadcasts in 802.11 are unreliable

Robust Broadcast

- Modified RTS/CTS scheme for broadcasts
- Retry with back-off until parent ACKed

Bad Performance In Mobile Networks

- Discovers nearly all links when nodes are stationary
- * Performance suffers in a mobile network

Building A Mesh

- Use the robustness of a mesh
 - A node can have multiple parents, max 'k'
- Modified Algorithm:
 - On receiving the the first 'k' distinct broadcasts, mark them as parents
 - Use distance from coordinator to avoid loops
 - A node sends 'k' broadcasts if it has 'k' parents ⇒ robustness

Mesh Advantages

A message from 'A' reaches 'S' through 3 different routes

- Tolerates lossy links
- Tolerates unreliable nodes
- Handles mobility

Mesh Failures

What if links to all parents fail?

⇒ Send information along alternate paths

 If a node is unable to send to any parents, it enters Panic mode and broadcasts its message to all its nbrs.

Panic Mode

When a node receives a bcast from a node in panic mode,

- it removes sender from its list of parents, and
- if message gives new information, and
 - if its parent list is non-empty,
 - it proceeds as before
 - if its parent list is empty,
 - it enters "Panic Mode" and bcasts to all nbrs

Panic Mode: Example

Note:

B does not resend info from D if it already received it from E.

Optimized Algorithm: Performance

- Simulation Environment : GloMoSim
 - 200m x 200m area
 - 50 nodes
 - Random waypoint mobility model
 - -802.11 MAC protocol
 - Varying speeds and power of nodes
 - Assume bidirectional links

Links Discovered: -10dBm

Links Discovered: -10dBm

Message Overhead: -10dBm

Without Panic

Message Overhead: -10dBm

Links Discovered: -4dBm

Message Overhead: -4dBm

Conclusions

Algorithm

- Discovers all links & nodes in most slow moving networks
- O(N) message complexity in such networks
- Adaptive: The robustness of the mesh is a parameter of the algorithm

Target scenario:

 Not all nodes are moving... Some moving slowly, most of them stationary ⇒ O(N)

Questions?

Backup Slides

Hybrid Wireless Network

Applications: Home, office networks, mesh networking

Stability properties

- Stable link
 - Present throughout running time of algo
- Semi-stable mesh
 - All nodes reachable via stable links in mesh
- Semi-stable network
 - All nodes reachable via stable links

Algorithm Properties

- Performance:
 - Semi-stable network: All links & nodes discovered
- Message complexity:
 - Semi-stable mesh: O(N) messages
 - Worst case: O(DN²) messages
- Adaptive Algorithm:
 - Performance degrades slowly as the number of nodes downstream of a mesh breakage increases.

Links Discovered: -6dBm

Without Panic Mode

Message Overhead: -6dBm

Without Panic

Links Discovered: -4dBm

Without Panic Mode

Links Discovered: -6dBm

With Panic Mode

Message Overhead: -6dBm

With Panic Mode

Message Overhead: -4dBm

Without Panic

