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Analytic number theory is about the problem

of explicating the relationship between analytic

properties of L-functions and distribution of

prime numbers.

• The Riemann zeta function is the prototype.

• However, it does not reveal all phenomena.

• In fact, perhaps it is impossible to understand

it in isolation.

• The study of non-Abelian Artin L-functions

may help.
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Let K/F be a finite Galois extension of number

fields with group G.

Fundamental problem: The distribution of primes

in conjugacy classes.

Example 1. If F = Q and K = Q(ζm), then

the Frobenius conjugacy class associated to a

prime p (that does not divide m) is the auto-

morphism

ζm 7→ ζam

where p ≡ a(mod m).
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Example 2. Let f be a monic polynomial of

degree d with integer coefficients whose Galois

group is the symmetric group Sd. The Frobe-

nius conjugacy class of a prime p that does not

divide the discriminant of f is determined by

the factorization of f modulo p. Indeed, if

f ≡ f1 · · · ft mod p

with fi irreducible of degree ri, then the Frobe-

nius conjugacy class of p is the conjugacy class

of permutations with cycle structure (r1-cycle)(r2-

cycle)· · · (rt-cycle).
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Let C be a conjugacy subset of G.

Denote by πC(x) the number of prime ideals

p of F that are unramified in K and whose

Frobenius symbol lies in C.

The Chebotarev Density theorem asserts that

πC(x) = (
|C|
|G| + o(1))Li x

where, as usual,

Lix =

∫ x

2

dt

log t
.
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To be useful in many applications, we need

a uniform and effective version of this. This

means an explicit error term.

Such error terms usually reflect knowledge of

the zeros and poles of various L-functions.

In this case, there is the Dedekind zeta func-

tion defined for Re(s) > 1 by

ζF (s) =
∑

a

(Na)−s

where the sum is over integral ideals a of OF

(the ring of integers of F ).
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A recent result of Ram Murty and Benjamin

Ju is that the “elementary proof” of the prime

number theorem can be extended to F pro-

vided we know that

#{a : Na ≤ x} = cFx + O(xθ)

for some θ < 1.

This is equivalent to knowing that ζF (s) has

a continuation to Re(s) > θ, analytic in that

region apart from a simple pole at s = 1.

In fact, we know that ζF (s) has such a contin-

uation to the entire s-plane.

The Generalized Riemann Hypothesis (GRH)

for ζF asserts that its “nontrivial” zeros are on

the line Re(s) = 1
2.
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An effective version of the Chebotarev Den-

sity Theorem was obtained by Lagarias and

Odlyzko.

Assuming the GRH for ζF (s), they showed that

|πC(x, F/K) − |C|
|G|

Li(x)| � |C|x1/2[K : Q](log dFx).

The challenge is to manage the dependence of

the error term on all the “constants” (such as

dF , [F : K], etc.)
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The challenge is to manage the field constants

in the error term. Can we get rid of them

altogether?

For example, could we expect that

|πC(x, F/K) − |C|
|G|

Li(x)| � x1/2(log x)?

No! This is not even true in the Abelian case

K = Q and F a quadratic extension of K.

Correct size of the error term is an open ques-

tion.

For example, is it possible that

|πC(x, F/K) − |C|
|G|Li(x)| � x1/2(log dFx)?
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To improve on the Lagarias-Odlyzko estimate,

we observe that the Dedekind zeta function is

not “primitive” (in the sense of Selberg). It

factors

ζF (s) =
∏

χ∈Irr(G)

L(s, χ)χ(1).

Here L(s, χ) is the Artin L-function associated

to the character χ of the Galois group.

In analytic number theory, whenever a zeta or

L-function factors, one expects better results

by working directly with the factors.
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In this case, the Artin L-functions have a mero-

morphic continuation for all s and a functional

equation.

Artin’s conjecture (AC) is that they are entire

apart from a pole at s = 1 of multiplicity equal

to < χ,1 >.

One can also ask the Riemann Hypothesis for

the L(s, χ). This actually follows from the

GRH for ζF (s).

More generally, the set of zeros and poles of

L(s, χ) are a subset of the zeros of the ζF (s).
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If we assume the GRH and AC, Ram Murty,

Saradha and KM showed that

|πC(x, F/K) − |C|
|G|

Li(x)|

� |C|1/2x1/2[F : K](log dFx).

Here, GRH means the Riemann Hypothesis for

ζF (s) and AC means the Hypothesis that all

L(s, χ) are analytic for s 6= 1.

In fact, the above bound can be essentially

proved even if AC is replaced by a weaker hy-

pothesis involving the growth of Artin L-functions

in Re(s) > 1/2. All we need is that for Re(s) >
1
2 + ε, we have the bound

L(s, χ) � (|s| + 1)cχ(1)[K:Q]

for some absolute constant c > 0.
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This is very useful when dealing with problems

in which conjugacy classes are very large.

An example of this is the Lang-Trotter con-

jecture. Let f be a holomorphic cusp form for

some congruence subgroup of SL2(Z) that is

a normalized eigenform for the Hecke algebra.

Write

f(z) =
∞
∑

n=1

af(n)e
2πinz

for its Fourier expansion at infinity. Suppose

that the Fourier coefficients all lie in Z.

The Lang-Trotter conjecture asserts that if

a 6= 0, then

#{p ≤ x : af(p) = a} = (c(f, a) + o(1))

√
x

log x
.
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Using the Galois representations associated with

f , this is translated into a Chebotarev problem

with group G = GL2(Z/`) (for some large

prime `) and C the conjugacy subset consist-

ing of elements of G of trace equal to a mod `.

We see that

|C| ∼ `3.

Using the Lagarias-Odlyzko estimate, one finds

that

#{p ≤ x : af(p) = a} � x7/8

while using the |C|
1
2 estimate, one obtains

#{p ≤ x : af(p) = a} � x4/5
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However, there are three defects in this:

• Even with these powerful assumptions, we

do not get close to the actual Lang-Trotter

estimate.

Indeed, it is only if we assume an estimate like

the question raised earlier:

|πC(x, F/K) − |C|
|G|Li(x)| � x1/2(log dFx)

that we can employ it in the above manner to

deduce an upper bound of the right order for

Lang-Trotter.
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• The improvement obtained by using GRH

and AC are not useful if the conjugacy class is

small.

For example, suppose we are dealing with the

problem of primes splitting completely in a field

of large discriminant.

This situation arises in the Artin primitive root

conjecture.

In this case improving the |C| to |C|
1
2 will not

have much impact.
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• These estimates do not completely reflect

the intuition that it is easier for a prime to fall

into a larger conjugacy class than a smaller

one.

We can apply each to get a bound for the

least prime which lies in a given conjugacy class

(analogue of the least prime in an arithmetic

progression).

The Lagarias-Odlyzko estimate gives a bound

of

(log dF )2.

In particular this is independent of the size of

the conjugacy class.
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The |C|
1
2 estimate gives a bound of

[K : Q]2

|C|
(n logn+ log dF )2

where n = [F : K].

This is better, but probably still does not re-

flect the truth. It is possible that the bound

of
(

1

|C|
log dF

)2

or a slightly weaker variant might hold.

Notice that this entire issue is invisible over Q.
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There is a large gap between what we can

prove or even conjecture and what might be

the truth.

We are still looking for a path.

Can we use finer information about the zeros

of Artin L-functions to improve the bounds?

Pair correlation is a natural candidate.
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This is not very effective in the distribution of

rational primes.

Assuming the RH, one has

π(x) = Lix + O(x
1
2(log x)).

Assuming a pair correlation conjecture for the

zeros of the Riemann zeta function improves

this to

π(x) = Lix + O(x
1
2(log x)

1
2).

However, it does seem to give a step forward

in the non-Abelian setting.

This is joint work with Ram Murty.
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The quantity to study is

ψC(x) =
∑

Npm≤x
Frobp⊆C

logNp.

Using the spectral decomposition of the char-

acteristic function of C, we have

ψC(x) =
|C|
|G|

∑

χ
χ(C)ψ(x, χ)

where

ψ(x, χ) =
∑

Npm≤x
Frobp⊆C

χ(Frobmp ) logNp.
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Assuming that L(s, χ) is entire, and using the

explicit formula, we deduce that

ψ(x, χ) = δ(χ)x −
∑

|γ|≤T

xρ

ρ
+ E(x, χ)

where the sum is over zeros ρ = ρχ = β + iγ

of L(s, χ) and E is an error term that can be

estimated easily.
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In fact, we have

E(x, χ)

� x log x

T
logAχT + χ(1)nFx

1/2 log x + · · ·

where · · · represents small terms that are easily

managed.

Here Aχ is the Artin conductor of χ. It is de-

fined by

Aχ = d
χ(1)
K Nfχ

where fχ is an ideal of K supported at primes

where χ is ramified.
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To analyze the sum over zeros, we set

S(T,X) = Sχ(T,X) =
∑

0≤γ≤T
exp(2πiγX)

with the sum ranging over the imaginary parts

of the nontrivial zeros of L(s, χ).

Assuming the GRH, the sum to estimate is

∑

|γχ|≤T

xiγ

1
2 + iγ

=

∫ T

0

dS(t, (log x)/2π)
1
2 + it

.

Integrating by parts, the right hand side is

� T−1S(T, (log x)/2π) + 1 +
∫ T

2

S(t, (log x)/2π)

t2
dt.
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We formulate a pair correlation conjecture to

estimate the sum S(T,X).

Let us set

w(u) =
4

4 + u2
.

Let us also define

P (T,X) = Pχ(T,X) =

=
∑

|γ1|,|γ2|≤T
w(γ1 − γ2) exp(2πi(γ1 − γ2)X).

Conjecture. Let A > 0. For

0 ≤ Y ≤ Aχ(1)[K : Q] logT

we have

P (T, Y ) �A T (logAχ + χ(1)[K : Q] logT ).
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Conjecture. Let A > 0. For

0 ≤ Y ≤ Aχ(1)[K : Q] logT

we have

P (T, Y ) �A T (logAχ + χ(1)[K : Q] logT ).

Using this, we deduce that

S(T,X) � T3/4 logAχ(T ) + T (logAχ(T ))
1
2 .

Here

logAχ(T ) = logAχ + χ(1)[K : Q] logT.
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Applying this in the formula for ψ(x, χ) we get

ψ(x, χ) − δ(χ)x � x
1
2 {E1 + E2}

where

E1 = 1 + T−1S(T, logx/2π) +

+

∫ T

2
t−2S(t, log x/2π)dt

and

E2 � xT−1(log x)(logAχ(T )).

Applying the estimate above for S(T,X), we

deduce that

ψ(x, χ)− δ(χ)x � x
1
2(logAχ(x))

1
2 log x + · · · .
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Now to apply this to ψC(x), we use the identity

∑

C⊆G

1

|C|

(

ψC(x) − |C|
|G|

x

)2

=
1

|G|
∑

χ6=1

|ψ(x, χ)|2.

Using the estimate of the previous slide, we see

that

∑

χ6=1

|ψ(x, χ)|2 � x(log x)2
∑

logAχ(x).

Recall that

logAχ(x) = logAχ + χ(1)[K : Q] log x.

We also have the estimate

logAχ � χ(1)[K : Q] logM

where M is a quantity defined in terms of the

ramified primes.
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Hence,

∑

χ
logAχ(x) � [K : Q](logMx)|G#|

1
2|G|

1
2

where G# denotes the set of number of irre-

ducible characters of G. Equivalently, it is the

number of conjugacy classes of G.
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Thus,

∑

C⊆G

1

|C|

(

ψC(x) − |C|
|G|

x

)2

�

� [K : Q]
|G#|

1
2

|G|
1
2

x(log x)2(logMx) + · · · .

Now choosing an individual C, we deduce that

ψC(x) − |C|
|G|

x �

� [K : Q]
1
2|C|

1
2

(

|G#|
|G|

)1/4

x
1
2(log x)(logMx)+· · · .

Notice that the quantity |G|/|G#| is the aver-

age size of a conjugacy class.
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To summarize the above discussion, we have

outlined a proof of the following result.

Theorem. Assume the GRH, AC and the Pair

Correlation conjecture for F/K. Then

πC(x) − |C|
|G|Lix �

� [K : Q]
1
2|C|

1
2

(

|G#|
|G|

)1/4

x
1
2(log x)(logMx)+· · · .

If we apply this to the Lang-Trotter problem,

we find (using the same notation as before)

#{p ≤ x : af(p) = a } � x2/3+ε.
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It is also instructive to see what bound this

gives for the least prime in a conjugacy class:

� [K : Q]

|C|
1

|Cav|
1
2

(log dF )2.

Here, we are writing |Cav| for the average size

of a conjugacy class. If we are in a group where

most conjugacy classes are the same size, then

this can be rewritten as

� [K : Q]

|C|3/2
(log dF )2.
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Finally, let us look at the implications of the

above theorem to the error term in the Artin

primitive root conjecture.

Let a 6= 0,1 be an integer that is not a square.

Set

Na(x) = #{p ≤ x : a is a primitive root mod p}.

Artin’s primitive root conjecture asserts that

Na(x) ∼ c(a)Lix.

Hooley proved this assuming the GRH (RH

for Dedekind zeta functions of Kummer exten-

sions.)
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In fact, he proved

Na(x) = c(a)Lix + O(x(log log x)2/(log x)2).

We expect the error term to be O(x
1
2+ε).

Theorem. Assume the GRH and PC. Then

Na(x) = c(a)Lix + O(x10/11(log x)2(log a)).

Sketch of Proof. Consider the Kummer exten-

sion

Lm = Q(ζm, a
1/m).

It is Galois over Q with group a semidirect

product (Z/m)× n (Z/m) AC is known for this

group.
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For m prime, this group has about m conju-

gacy classes of which m− 1 are singletons and

one has size m. Thus, the size of an average

conjugacy class is m.

Denote by πm(x) the number of primes p ≤ x

that split completely in Lm.

By our main result

Lm(x) =
1

mφ(m)
Lix + O(x

1
2m−1/4 log amx).
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By inclusion-exclusion,

Na(x) =
∞
∑

m=1

µ(m)πm(x)

as a is a primitive root modulo p if and only if

p does not split completely in any Lm.

Using this, we see that

∑

m≤y
µ(m)

(

πm(x) − Lix

mφ(m)

)

� x1/2y3/4(log x)2(log a).
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Also,

∑

y≤m≤x
πm(x) �

∑

p≤x

∑

y≤m≤x
m|(p−1),p|a(p−1)/m−1

1.

This is bounded by

∑

v≤x/y

∑

p|av−1

1 � (x/y)2(log a).

Choosing y = x6/11 gives the result.
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Remark 1. The PC assumption is that for

0 ≤ Y ≤ Aχ(1)[K : Q] logT , we have

P (T, Y ) �A T (logAχ + χ(1)[K : Q] logT ).

Note that we only need an upper bound and in

the application, we need it only for some value

of A > 0.

Remark 2. The trivial estimate is

P (T, Y ) �A T (logAχ + χ(1)[K : Q] logT )2.

Remark 3. Following the work of R. Murty

and Zaharescu, it should be possible to formu-

late the above PC hypothesis without the GRH

and to study its implication for the Chebotarev

density theorem.


