A New Mathematical Programming Framework for Facility Layout

Miguel F. Anjos

Electrical \& Computer Engineering, U. of Waterloo
(joint work with Anthony Vannelli)

Fields Institute for the Mathematical Sciences
9 May 2002

The Facility Layout (or Floorplanning) Problem

- Find the optimal positions for a given set of N rectangular departments of fixed area within a rectangular facility of fixed area.
- All the dimensions may be given or left undetermined.
- The objective is to minimize (according to some norm, e.g. l_{1}, l_{2}) the distances between pairs of departments that have a nonzero connection "cost".

Applications ?

- Hospital layout
- Service center layout
- VLSI placement and design
- etc.

But : Like many optimization problems from practical applications, the facility layout problem is "hard" (NP-hard).

Small Example

Dept	Area
1	16
2	16
3	16
4	36
5	36
6	9
7	9
8	9
9	9

i	j	$C_{i j}$	i	j	$c_{i j}$	i	j	$C_{i j}$
1	4	5	2	9	1	4	7	4
1	5	5	3	4	2	5	6	3
1	9	1	3	5	2	5	9	4
2	4	3	3	9	1	6	9	2
2	5	3	4	6	4	7	9	1

Facility is fixed to be a 12×13 rectangle

Possible Layout for Example

Total Euclidean cost: 229.71

Motivation for this Work

-Exact mixed integer programming approaches only work for problems with less than 10 departments.
-Most other approaches in the literature are based on heuristic search methods.
\Rightarrow We present a new two-stage framework based on mathematical programming models, and inspired by a convex global relaxation of the layout problem.

Outline of the Proposed New Framework

\checkmark The first model is a convex relaxation of the layout problem (to find a good starting point);
\checkmark The second model is an exact formulation of the problem as a mathematical program with equilibrium constraints (MPEC).
\rightarrow Both models can be solved efficiently using widely available non-linear optimization software.

The NLT method

(van Camp, Carter \& Vannelli, 1991)

NLT: Three-Stage Approach

(1) Evenly distribute the centres of the departments inside the facility;
(2) Reduce the overlap between departments;
(3) Determine the final solution by solving the vCCV model.

Stages 1 and 2 are (non-convex) relaxations of the vCCV model which approximate the departments by circles.

The Stage-2 model of NLT

$\min _{\left(x_{i}, y_{i}\right), h_{F}, w_{F}} \sum_{1 \leq i<j \leq N} c_{i j} d_{i j}$
subject to

$$
d_{i j} \geq r_{i}+r_{j} \quad \forall i \neq j
$$

$$
\frac{1}{2} w_{F} \geq x_{i}+r_{i} \quad \frac{1}{2} w_{F} \geq r_{i}-x_{i} \quad \forall i
$$

$$
\frac{1}{2} h_{F} \geq y_{i}+r_{i} \quad, \quad \frac{1}{2} h_{F} \geq r_{i}-y_{i} \quad \forall i
$$

$$
l_{F}^{\max } \geq \min \left(w_{F}, h_{F}\right) \geq l_{F}^{\min },
$$

where $\quad d_{i j}:=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$
and r_{i} is the radius of the circle for department i.

ModCoAR:
 The First Model of the New Framework

Steps to derive the ModCoAR model

(1) Define the target distance concept for circles with varying radii;
(2) Enforce the target distances using a repeller term in the objective function;
(3) Analyse and convexify the result
\Rightarrow Concept of generalized target distances;
(4) Add a barrier term (for ease of computation).

For convenience, we work with the squares of the distances:

$$
D_{i j}:=d_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

Target distances concept

Hence the target distance between circles i and j is

$$
t_{i j}:=\alpha \cdot\left(r_{i}+r_{j}\right)^{2} \quad \text { for some } \alpha>0 .
$$

Attractor-Repeller Paradigm

For each pair i, j of modules, the distance minimizing term is viewed as an attractor:

$$
c_{i j} \cdot D_{i j}, \quad c_{i j} \geq 0, \quad D_{i j} \geq 0
$$

is minimized when $D_{i j}=0$.

Enforcing the target distances

To counter this "attraction", we enforce the target distances with repeller terms in the objective function:

$$
f(z):=\frac{1}{z}-1, \quad z>0
$$

and $z=\frac{D_{i j}}{t_{i j}}$, where $t_{i j}$ is the target distance.

The (non-convex) AR model

min
$\left(x_{i}, y_{i}\right), h_{F}, w_{F}$
subject to

$\overline{d_{i i} \geq r_{i} \quad \forall i \neq i}$

$$
\frac{1}{2} w_{F} \geq x_{i}+r_{i} \quad \forall i
$$

$$
\frac{1}{2} h_{F} \geq y_{i}+r_{i} \quad \forall i
$$

$$
\frac{1}{2} w_{F} \geq r_{i}-x_{i} \quad \forall i
$$

$$
\frac{1}{2} h_{F} \geq r_{i}-y_{i} \quad \forall i
$$

$$
\left.l_{F}^{\max } \geq \min , n_{F}\right) \geq l_{F}^{\min }
$$

Examine the objective function

Rewrite the objective function:

$$
\sum_{1 \leq i<i \leq N} c_{i j} D_{i j}+\sum_{1 \leq\langle i<\leq N}\left(\frac{t_{i j}}{D_{i j}}-1\right)=\sum_{1 \leq i \ll \leq N}\left(c_{i j} D_{i j}+\frac{t_{i j}}{D_{i j}}-1\right)
$$

and since the sum of convex functions is convex, we ask:

When is the term $c_{i j} D_{i j}+\frac{t_{i j}}{D_{i j}}-1$ convex?

Fact: Let $g: \mathfrak{R}^{4} \rightarrow \mathfrak{R}, \quad g\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=c z+\frac{t}{z}-1$, where

$$
c>0, t>0 \text { and } z>0, z=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}
$$

Then the following statements hold for g :

1. If $z \geq \sqrt{\frac{t}{c}}$ then the Hessian of g is positive semidefinite.
2. If $z=\sqrt{\frac{t}{c}}$ then the gradient of g is zero.

Define a new (convex!) function

For $c_{i j}>0, t_{i j}>0$, and $D_{i j}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$, we define the convex, continuously differentiable piecewise function

$$
f_{i j}\left(x_{i}, x_{j}, y_{i}, y_{j}\right):=\left\{\begin{array}{l}
c_{i j} D_{i j}+\frac{t_{i j}}{D_{i j}}-1, \quad D_{i j} \geq \sqrt{\frac{t_{i j}}{c_{i j}}} \\
2 \sqrt{c_{i j} t_{i j}}-1, \quad 0 \leq D_{i j}<\sqrt{\frac{t_{i j}}{c_{i j}}}
\end{array}\right.
$$

The convex CoAR model

min
$\left(x_{i}, y_{i}\right), h_{F}, w_{F}$

$$
\sum_{1 \leq i<j \leq N} f_{i j}\left(x_{i}, x_{j}, y_{i}, y_{j}\right)
$$

subject to

$$
\begin{aligned}
& \frac{1}{2} w_{F} \geq x_{i}+r_{i} \quad \forall i \in M \\
& \frac{1}{2} h_{F} \geq y_{i}+r_{i} \quad \forall i \in M \\
& \frac{1}{2} w_{F} \geq r_{i}-x_{i} \quad \forall i \in M \\
& \frac{1}{2} h_{F} \geq r_{i}-y_{i} \quad \forall i \in M \\
& w_{F}^{\max } \geq w_{F} \geq w_{F}^{\min } \\
& h_{F}^{\max } \geq h_{F} \geq h_{F}^{\min }
\end{aligned}
$$

When is the value of $f_{i j}$ minimum?

- We deduce from the structure of $f_{i j}$ that its minimum value is attained for all positions of the departments i and j for which

$$
D_{i j} \leq \sqrt{\frac{t_{i j}}{c_{i j}}}
$$

- This includes $D_{i j}=0$ (complete overlap!).

Since we want to minimize overlap, what we really want is a layout for which

$$
D_{i j} \approx \sqrt{\frac{t_{i j}}{c_{i j}}} .
$$

For such a point, we have $D_{i j}$ proportional to $t_{i j}$;
hence our original target distances are still enforced.

Generalized Target Distances

If we define

$$
T_{i j}:=\sqrt{\frac{t_{i j}}{c_{i j}+\varepsilon}}, \quad \varepsilon>0 \quad \text { "small" }
$$

then we can think of $T_{i j}$ as a
generalized target distance
for the departments i and j.

This "new" target distance takes both $t_{i j}$ and $c_{i j}$ into account.

Practical Interpretation of $\boldsymbol{T}_{i j}$

$$
T_{i j}:=\sqrt{\frac{t_{i j}}{c_{i j}+\varepsilon}}
$$

- If $c_{i j}$ is small, then departments i and j are likely to be placed far apart in the layout, so the corresponding $T_{i j}$ can be large;
- If $c_{i j}$ is large, then the opposite reasoning applies, and $T_{i j}$ can be small;
- But $T_{i j}$ also takes $t_{i j}$ into account!

How to achieve $T_{i j}$?

Add to the objective function a term of the form

$$
-K \ln \left(\frac{D_{i j}}{T_{i j}}\right)
$$

for each pair of departments.
The resulting function has minima that satisfy

$$
D_{i j} \approx T_{i j}
$$

A Glimpse of the 4D Function...

The ModCoAR model

min
$\left(x_{i}, y_{i}\right), h_{F}, w_{F}$

$$
\sum_{1 \leq i<j \leq N} F_{i j}\left(x_{i}, x_{j}, y_{i}, y_{j}\right)-K \ln \left(D_{i j} / T_{i j}\right)
$$

subject to

$$
\begin{aligned}
& \frac{1}{2} w_{F} \geq x_{i}+r_{i}, \quad \frac{1}{2} h_{F} \geq y_{i}+r_{i} \quad \forall i \\
& \frac{1}{2} w_{F} \geq r_{i}-x_{i}, \quad \frac{1}{2} h_{F} \geq r_{i}-y_{i} \quad \forall i \\
& w_{F}^{\max } \geq w_{F} \geq w_{F}^{\min }, \quad h_{F}^{\max } \geq h_{F} \geq h_{F}^{\min }
\end{aligned}
$$

where

$$
F_{i j}\left(x_{i}, x_{j}, y_{i}, y_{j}\right):= \begin{cases}c_{i j} D_{i j}+\frac{t_{i j}}{D_{i j}}-1, & D_{i j} \geq T_{i j} \\ 2 \sqrt{c_{i j} t_{i j}}-1, & 0 \leq D_{i j}<T_{i j}\end{cases}
$$

BPL :
 The Second Model of the New Framework

$$
\begin{gathered}
\text { Non-overlap constraints } \\
\left|x_{i}-x_{j}\right|-\frac{1}{2}\left(w_{i}+w_{j}\right) \geq 0 \text { if }\left|y_{i}-y_{j}\right|-\frac{1}{2}\left(h_{i}+h_{j}\right)<0 \\
\left|y_{i}-y_{j}\right|-\frac{1}{2}\left(h_{i}+h_{j}\right) \geq 0 \text { if }\left|x_{i}-x_{j}\right|-\frac{1}{2}\left(w_{i}+w_{j}\right)<0
\end{gathered}
$$

Note that these constraints are disjunctive...
\ldots and therefore can be written as
$\frac{1}{2}\left(w_{i}+w_{j}\right)-\left|x_{i}-x_{j}\right| \leq 0 \quad$ or $\quad \frac{1}{2}\left(h_{i}+h_{j}\right)-\left|y_{i}-y_{j}\right| \leq 0$
which is equivalent to

$$
\min \left\{\frac{1}{2}\left(w_{i}+w_{j}\right)-\left|x_{i}-x_{j}\right|, \frac{1}{2}\left(h_{i}+h_{j}\right)-\left|y_{i}-y_{j}\right|\right\} \leq 0
$$

New variables

For each pair of departments, introduce two new variables
and let

$$
X_{i j}, Y_{i j}
$$

$$
\begin{aligned}
& X_{i j} \geq \frac{1}{2}\left(w_{i}+w_{j}\right)-\left|x_{i}-x_{j}\right|, \quad X_{i j} \geq 0 \\
& Y_{i j} \geq \frac{1}{2}\left(h_{i}+h_{j}\right)-\left|y_{i}-y_{j}\right|, \quad Y_{i j} \geq 0
\end{aligned}
$$

Equilibrium Constraints

Then
$\min \left\{\frac{1}{2}\left(w_{i}+w_{j}\right)-\left|x_{i}-x_{j}\right|, \frac{1}{2}\left(h_{i}+h_{j}\right)-\left|y_{i}-y_{j}\right|\right\} \leq 0$
is equivalent to

$$
X_{i j} Y_{i j}=0
$$

MPEC Formulation (Math. Prog. With Equilibrium Constraints)

$\min _{\left(x_{i}, v_{i}\right) h_{i}, w_{i}, h_{F}, w_{F}} \quad \sum_{1 \leq i<j \leq N} c_{i j} \delta_{i j}$
s. t. $\quad X_{i j} \geq \frac{1}{2}\left(w_{i}+w_{j}\right)-\left|x_{i}-x_{j}\right| \quad, \quad Y_{i j} \geq \frac{1}{2}\left(h_{i}+h_{j}\right)-\left|y_{i}-y_{j}\right|$
$X_{i j} Y_{i j}=0 \quad, \quad X_{i j} \geq 0 \quad, \quad Y_{i j} \geq 0, \quad \forall 1 \leq i<j \leq N$
$h_{i} w_{i}=a_{i} \quad \forall i \quad$ (area constraints)
plus: "fit-in-the-facility" constraints and bound constraints (all linear)
and $\delta_{i j}\left(x_{i}, x_{j}, y_{i}, y_{j}\right)$ is the desired norm $\left(l_{l}, l_{2}, \ldots\right)$.

Computational Results

Solution methodology

- We solve both models using the software package MINOS.
- For ModCoAR, because of the linearity of the constraints, convergence is generally superlinear.

Solution methodology (ctd)

- We chose to set

$$
K=\sum_{1 \leq i<j \leq N} c_{i j}
$$

so that K clearly dominates the $c_{i j}$'s.

- MINOS requires an initial configuration to start the (iterative) algorithm for solving ModCoAR.

Choice of initial configuration

Solving the MPEC using MINOS

- The complementarity constraints

$$
X_{i j} Y_{i j}=0 \quad, \quad X_{i j} \geq 0 \quad, \quad Y_{i j} \geq 0
$$

imply that no strictly feasible point exists. This causes MINOS to fail...

- Thus we apply a penalty-type approach to the above constraints.

BPL Model

$\min _{\left(x_{i}, y_{i}\right), h_{i}, w_{i}, h_{F}, w_{F}}$

s. t. $\quad X_{i j} \geq \frac{1}{2}\left(w_{i}+w_{j}\right)-\left|x_{i}-x_{j}\right| \quad, \quad Y_{i j} \geq \frac{1}{2}\left(h_{i}+h_{j}\right)-\left|y_{i}-y_{j}\right|$ $X_{i j} \geq 0 \quad, \quad Y_{i j} \geq 0, \quad \forall 1 \leq i<j \leq N$ $h_{i} w_{i}=a_{i} \quad \forall i$
plus: "fit-in-the-facility" constraints and bound constraints (all linear)

Aspect ratio constraints

- The aspect-ratio for department i is defined as

$$
\beta_{i}:=\frac{\max \left\{h_{i}, w_{i}\right\}}{\min \left\{h_{i}, w_{i}\right\}}
$$

- Bounding (above) the aspect ratio ensures that no departments are excessively narrow in the layout.

Aspect ratio constraints (ctd)

- We enforce the bound β_{i}^{*} on β_{i} by adding to BPL the constraints

$$
\beta_{i} w_{i} \geq h_{i}, \quad \beta_{i} h_{i} \geq w_{i}, \quad \beta_{i}^{*} \geq \beta_{i} .
$$

Classical example :
 Armour \& Buffa problem (1963)

- Large problem (20 departments) - beyond all previous mathematical programming approaches (mixed integer programming).
- Each run of our algorithm requires approximately 18 seconds of CPU time (300 MHz SunSPARC).
- We can compare our framework using the rectilinear norm with the most recent results in the literature (Tate \& Smith'95 -- genetic algorithm).

Experiments with the Armour \& Buffa problem (1)

First we set no aspect ratio constraints, only a lower bound of 2 on all heights and widths.

We found a layout with cost 4230.6
and aspect ratio 6.67

In TS'95, the best layout with aspect ratio bounded by 7 has cost 5255.0

Experiments with the Armour \& Buffa problem (2)

Then we started setting aspect ratio constraints:

β_{i}^{*}	TS'95	New framework
5	5524.7	4591.3
4	5743.1	4786.4
3	5832.6	5140.1
2	6171.1	5224.7

Best layout with $\beta_{i} \leq 4$

Best layout with $\beta_{i} \leq 4$ (ctd)

Total cost 4786.4 (versus 5743.1 in TS'95)

On-going and Future Research

- Apply this framework to the MCNC macro-cell layout problems, and compare the results with other methods.
- Investigate more thoroughly the role of α in the model.
- Improve the solution methodology; in particular, apply a nonlinear programming solver that directly tackles the MPEC formulation in spite of the lack of a strictly feasible point.

References

- M.F.A. "New Convex Relaxations for the Maximum Cut and VLSI Layout Problems". Ph.D. Thesis, University of Waterloo, 2001. Available at http://etd.uwaterloo.ca/etd/manjos2001.pdf
- M.F.A. and A. Vannelli. "An Attractor-Repeller Approach to Floorplanning". To appear in Math. Meth. Oper. Res., 2002.
- M.F.A. and A. Vannelli. "A New Mathematical Programming Framework for Facility Layout Design", March 2002.

Papers available (until publication) at http://www.optimization-online.org

