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Forced van der Pol Equation

EX + v
T = — —
Y 3
= —x + asin(276)
i = w

Classical model in dynamical systems theory: first example of “chaos”
e Analysis by Cartwright and Littlewood, Grasman, Takens, ...
e Emphasis upon stable subharmonic orbits of different periods

e Levinson's piecewise linear modification the precursor to Smale’s
horseshoe

No published calculations for ¢ < 0.017
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Bifurcation with Multiple Time Scales

Dynamical systems theory examines generic (persistent) phenomena

e Special structure (multiple time scales) changes meaning of
generic

e Forced van der Pol system provides case study for bifurcations of
relaxation oscillations

e Limited understanding of bifurcation in slow-fast systems

e Numerical methods for multiple time scales are problematic
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Slow-fast Systems

ex = f(z,y) r € R™
y = g(=,y) yekRr"
Two-time scales
e Limit ¢ = 0 is differential algebraic equation

Time rescaling produces slowly varying system

r = f(z,y) Te€R™
/

y = eg(z,y) yeR"

e For fixed y, flow in x is fast subsystem
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Van der Pol Cycle
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Terminology

Standing assumption: limit sets of fast subsystems are equilibria
e Critical manifold: set of equilibria from fast subsystems
¢ Slow manifold: invariant manifold on which flow has speed O(¢)

e Slow flow: flow on critical manifold derived by rescaling time and
eliminating fast variables

e Fold: singularities of the projection of the critical manifold onto
the slow variables

e Junctions: where slow and fast segments of a trajectory meet

¢ Relaxation oscillation: periodic orbit with slow and fast segments

N /




Slow-fast Flow
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Forced van der Pol Slow Flow

On the critical manifold

y—(z° =1z = 0
Rescale by h(z,y,0) = 2% — 1
Eliminate y from rescaled slow equations
0 = w(x*-1)
' = —x+ asin(27h)
Jumps from fold curves £ = £1 to x = F2

Symmetry: x — —xz, 0 — 0 +0.5
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The Singular Limit: Classical Theory

Relate slow flow and fast trajectories to trajectories of full flow?

e Theorem: On regular sheets of critical manifold, slow flow
trajectories are singular limits of trajectories of full system

e Theorem: Flow along jumps of regular folds bounding stable slow
manifolds are limits of trajectories of full system

e Folded singularities: singular points of slow flow on fold curves
of critical manifold

e Canards: trajectories that flow along unstable sheets of critical
manifold form folded singularities
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Slow Flow Geometry

Folded singularities if a > 1: x = £1, sin(270) = +1/a

e Folded saddles and nodes (1 < a < /1 + 1/(25672w?)) or foci
(a > +/1+1/(256m2w?))

e Stable and unstable manifolds of folded saddles yield

discontinuities of return map

zero and infinite slopes
Tin (tangency inflow) points if a > 2: x = £2, sin(276) = +2/a

e Tin points become quadratic turning points in return maps
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e Asymptotics of return map differ on two sides of discontinuities:
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a=20w =25

Forced van der Pol 3d flow
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The Half Return Map H

H: flow from £ = 2 to £ = 1, jump and apply symmetry
e Fixed points give symmetric periodic orbits with only two jumps

e Three parameter regimes
— a < 1: circle diffeomorphisms - invariant tori
— 1 < a < 2: discontinuous monotone maps of circle into arc

— 2 < a: discontinuous maps of circle into arc with turning points

e Conjecture: at most 3 fixed points
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Forced van der Pol slow flow: critical trajectories
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Forced van der Pol half-return map: a =1.5w =1
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Return Map Bifurcations

Repetitive families indexed by circuit number

e Homoclinic bifurcations at points of discontinuity for return map

— Left: saddle jumps to first intersection of stable manifold with
T =2

— Right: p1, jumps to intersection of stable manifold with z = 2
e Saddle-node bifurcations of return map
— Types max and min: local maximum/minimum of H(x) — x

e Nodal homoclinic bifurcations where node jumps to intersection of
its strong stable manifold with z = 2

e Heteroclinic bifurcation where node jumps to stable manifold of
saddle
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Half period map (mod 1)
T T T

w = 1.2714980947
0.9+ a = 3.0000000000
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0

Forced van der Pol half-return map at left homoclinic bifurcation:
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Half period map (mod 1)
T T T

w = 1.3220255966
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Forced van der Pol half-return map at right homoclinic type
bifurcation of type 1
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Half period map (mod 1)
T T T
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Forced van der Pol half-return map at right homoclinic bifurcation of
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type 3
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Half period map (mod 1)
T T T
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Forced van der Pol half-return map at right homoclinic bifurcation of
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type 2
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Half period map (mod 1)
T T T

w = 1.4988312856
0.9k a = 1.2500000000
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Forced van der Pol slow flow near max saddle-node
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Half period map (mod 1)
T T T

w = 1.3384364422
0.9F a = 3.0000000000
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Forced van der Pol slow flow near min saddle-node
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Return Map Codimension Two Bifurcations:
Fixed Points

From the bifurcation diagram
e Saddle-node equilibrium with homoclinic trajectory
—a=1

— Weak stable orbits jump before reaching saddle-node point
e Cusp: weakly unstable

e Transversal crossings of codimension one bifurcations
— saddle-nodes with left homoclinics

— left and right homoclinics
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Forced van der Pol flow near saddle-node point
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Forced van der Pol half-return map near folded saddle:
a=1.00005 w =1.6
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Bifurcations of Period 2 Orbits

Add period 2 bifurcations to bifurcation diagram
e Many similarities with fixed point bifurcations
e New types of codimension 2 homoclinic bifurcations

e Interaction with codimension 2 bifurcation of fixed points:
transversal crossing of right and left homoclinic curves

e Regions with chaotic invariant set

N
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Bifurcation diagram with period 2 oribts
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Second lterate of the Half period map (mod 1)
T T T
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Second lterate of the Half period map (mod 1)
T
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Second lterate of the Half period map (mod 1)
T T T
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Half return

N

Second lterate of the Half period map (mod 1)
T T T

w = 1.3478200000
0.9+ a = 3.2972500000
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map and second iterate at intersection of homoclinic curves
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Second lterate of the Half period map (mod 1)
T T T

w = 1.3400853100
0.9+ a = 3.2000000000
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Half return map and second iterate with chaos
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Bifurcations of Forced van der Pol

From the singular limit back to the slow-fast system
e Uniformization and asymptotic analysis of folded singularities

e Canards are trajectories that flow onto unstable sheet of critical
manifold

e Benoit analysis of folded saddles

e Canards at folded nodes have not been characterized

2

EL = Y—<
y = az+bx
z = 1

N
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Folded node trajectories: x vs.
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Canards in the Forced van der Pol System

Canards beginning at folded saddles
e Follow (un)stable manifold of folded saddle to a jump point
e Two families of jumps parallel to = axis : up and down
e Multiple canards: jump lands on stable manifold of a folded saddle

e Construct canard return map with “horseshoe”: two stable
periodic orbits and hyperbolic solenoid

e Circuit numbers of rectangles in construction differ

N /
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Canard location in forced van der Pol: a =4 w = 1.55
Red: stable manifolds
Magenta: unstable manifold (extended past jump)
trajectories of tin points
Blue: canard and projections
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Generic Relaxation Oscillations

Starting point: slow-fast decompositions
e Classification of generic folds: uniformization

e Focus upon stable slow manifolds and ones with a single unstable
direction

e Determine junctions of generic trajectories in generic systems
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Degenerate Decompositions: Codimension 1

Degeneracies encountered in generic one parameter families of
relaxation oscillations beginning at stable orbit

in-fold — out-fold
folded saddle
saddle-initiated canards
Hopf bifurcation at folds
initiation at cusp

in-fold — in-fold

jump maps an in-fold non-transversally to slow flow on sheet of
slow manifold at the end of the jump

~
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Case of in-fold — out-fold

Geometric Models & Asymptotic Analysis

e Family of relaxation oscillations in which junction from fast
segment to slow segment reaches an out-fold

e Return map is composition of transitions along slow and fast

segments and across jumps
e Model system by normal forms in each region
e Special attention to transition past degeneracy on fold 1
e Canard formation at degeneracy

e Several cases: chaos is possible

e Bifurcations occur as canard formation begins

~
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Degenerate decomposition: in-fold — out-fold
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Bifurcations of Relaxation Oscillations

Analysis of bifurcations subsidiary to degenerate decompositions
e Examine each type of degenerate bifurcation
e Study uniformizations and asymptotic expansions at degeneracies
e Build models for relaxation oscillations encountering degeneracies
e Maximal and multiple canards lead to hierarchy of exponentials
e Develop algorithms based upon asymptotic analysis

Initial focus upon classical example: forced van der Pol equation
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