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Topics:
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o Systems with local finite degrees of freedom
e Systems characterized by conjugate variables
e Bosonic systems

e Unphysical Hamiltonians

e Fermionic systems

e Open questions
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Simulating quantum systems on a

classical machine
Richard Feynman (1982)

A system with n particles, each, say, given as a
2-level system is described by 2" complex coefficients.
In order to simulate the time-dynamics we have to
keep track of these 2" coefficients in time which

takes exponentially much space.

But at the end, we do a measurement, say, on a single
qubit, do we really need to keep track of all these 2" coefficients?

= The question of the power of quantum computation
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Universality

Richard Feynman (1982):

“What, in other words, is the universal qguantum simulator?
....If you had discrete quantum systems, what other discrete
quantum systems are exact imitators of it, and is there a
class against which everything can be matched?”

Involves the question of efficiency: given a physical system with
n d-level particles; can we simulate the time-dynamics of

this system on our universal quantum computer in a

polynomial number of steps in n?

/24101 Explore a set of physical quantum systems.....



The quantum computer model

Uz -
U3

e Hilbert space, a tensor product of two-dimensional spaces
e Use 2 qubit gates between any 2 qubits and 1 qubit gates
e 1-qubit measurements in computational basis.
e Simulation cost: count the number of 1 and 2 qubit gates;
is it polynomial in n?
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Systems with finite local
degrees of freedom

Dynamics of a physical system given by time-independent
Hamiltonian H=H>= (H Hermitian) which gives rise to a unitary
time-evolution U=elt

e Hilbert space K has a tensor product structure where each
term in the product has a small finite dimension.

K=K, 7~ K, r~...7 K, where dim(K;)=c,

e The Hamiltonian H is a sum of interactions involving a

a small constant number of local Hilbert spaces K:

H=2, H,, where H, acts on, say, a small constant number
of spaces K. A local Hamiltonian.
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Example

Crystal structure with nuclear spins of atoms on lattice
sites. Interactions between the spins is short range. For
example, the J-coupling between neighboring nuclear
spins: H=a,XI'7X+ a,YI 7Y+ a2~ Z.

The problem:

1) Match qubits with local Hilbert spaces K;

2) Express et in a sequence of local gates: dependence
on accuracy of simulation, time t and number of qubits n.
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Small time-step method

H=A+B, where [A,B]=AB-BA Y0

Use Baker-Campbell-Hausdorff formula for small t:

~ 2
e(A+B)'[ — eA’[eB’(e [A,B]t°/2 +O(t3)

Take a large integer k, such that t/k << 1: we write

Ut =™ = (e'(A+B)t/k) and we simulate

t/k — AI(A+B)t/k Tt/k — AIAt/kAiBt/k
YUk = @ (A+B) YUtk =

by e e

Simulate A and B for a short time t/k in alternating fashion.
5/24/01



Approximation Error ||a|| is operator norm:

[1Al]=max || Alw> ||

U'[/k _Ut/k H: O((t/k)z)
U'-U'=F0(k(t/k)?) =0Ot?*/k)=J

poly(n)
Now consider a general local qubit Hamiltonian H = Z H,
=1

]
_ ~ i ' IH  t/k
We approximate e||-|t/k by Ut/k — e'Hl”ke'Hz”k...,e' D

Simulation cost (when each H, acts on a 2-qubit Hilbert space):
To obtain a final accuracy 8, we use k poly(n)=Ot%/d)poly(n)
2-qubit gates.

5/24/01 Note t2 dependence...



Systems with continuous
conjugate variables

1. Observables of position x and momentum p of a

particle.
2. Bosonic systems, see further
2. Phase difference and number of Cooper pairs tunneled

in superconducting Josephson junction.

A Ay © %) = x| x>,
X, Pl =1l X) = —— [dpe® )
P 0= T JPEN o= pips

Consider H=H,(p)+H,(x) (drop "s on operators) (> ]

Example: a quantum particle in a potential, i.e. H,(x)=V(x)

(the potential) and H,(p)=p?/2m where m is the mass.
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Simulation

Discretize Hilbert space: |x>, x=0...2"-1. >A<\ X> =X|x>
and let the p-basis be related to the x-basis by a discrete

Fourier transform:
Zp =2"-1 2npx/2n
/2n

As before, slice up simulation in small time-steps t/k

Ut/k 1(p)t/keIH > (X)t/k _l_O((t/k) )

, and implement with

%iHl(O)t/k 0

p)

%iHZ(O)t/k 0

] U, - Uer R
0 % 0 eiHl(Z”—l)t/k% % 0 a2 (2"-D)t/k
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Diagonal Phaseshifts

We can compute g(p)=2H,(p) t/k given p, i.e.
Ip>—7|0>®|p>—|g(p)<=0> where, say, g(p) is

given with | bits.

Then we can use the following circuit:

g(p)>

ib

12b

b is the control bit.
The circuit uses

| controlled 1-qubit
phaseshifts.



Total Cost of Simulation

Run for time t, obtain accuracy & (omitting error due to
discretization):

Number of elementary gates=Q(t2/5) (O(n2)+2I)
-

phaseshifts
#gates for Fourier transform

Many particle system with [x;,p;]=[p;p;]=0 for iYoj,

H =Y L H(P)+V (% X0 X)
5/24/01 Basis for Hilbert space is ‘)(1,X2,...,Xm>



Bosons

For example, photons....

Creation and annihilation operators of a particular
mode (characterized by polarization and wave-
vector)

a=|n>=(n+1)2|n+1>, a|n>=n'2|n-1> and their
commutation relations [a, a=]=1.

Furthermore, a and a= commute with creation and
annihilation operators b, b= of a different mode.
Take 1

X, —ﬁ(a+a) [X, p] =1l

Hermitian

(a-a’) conjugate variables...

Pa = |f
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Bosonic representation

Take a basis for finite Hilbert space, |x,>=|0,...,2"-1>
Or for more modes, |X,>I7 |X,>.....

Goal: simulate bosonic interactions (possibly between
different modes) with a humber of elementary gates
that is polynomial in n. Large n limit, simulation should
capture some of the continuum dynamics.

In conjugate variable representation, these interactions
can be simulated efficiently: [ ]

Displacement: H=gaj(a-a")+a,(a+a’) =
V2(ax, - a,p,),
Phaseshifter: 4 =a'g = % (O + p2 -1),
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Some Linear Optics Interactions

\ ’. —_ Lt —
Squeezer”: H =ab+a'b” =x X, — p,p,

Beamsplitter: H =ab"+a’b=xx +p

But other interactions such asH = X_ p, + p,X,
may be harder...

Are we expecting too much, if we ask for a polynomial (in n)
simulation here?

Energy of system < number of levels < 2n
5/24/01 Energy to physically operate on system & 20



Special ‘Unphysical’ systems

‘Unphysical’, since interaction
involves all n qubits

H=Z—Z=...r=72
2=[p 2 27" |x>= (-1 | x>

This suggests:
1Zt | b
|X>D|0>—>IX>D|OD x; > [ & st et

g’ |X>D|OD X, > D x>0

Cost: 2n 2-qubit CNOT gates+1 1-qubit rotation
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‘Unphysical’ systems -

Similar for H'=Xrr=Zr=1r=...r>Y etcx :ﬁ %@y :ﬁ) _oi ﬁ

ince @M =y 1@ (Z0Z010..02)y

where U is a tensorproduct of 1 qubit operations U,...U,
rotating Z to X and Y, for example U,* Z U,=X with

_1p 1 -
u, = ﬁﬁ _ﬁ The Hadamard transformation

Concatenation with the previous techniques allows a

simulation of Hamiltonians which are sums of polynomially

many terms, each of which has a polynomial time circuit
5/24/01 such as H’



Fermions

Example: (spinless) electrons on a lattice. The operator a> (a;)
creates (annihilates) an electron at lattice site i. Since electrons
are fermions, no two electrons can occupy the same state
(here the same lattice site). Thus we can associate their
presence/absence at a lattice site with a 2-level system.

(Compare with bosons in which many particles can be
created in the same mode and therefore Hilbert space of
a single mode is large.)

Because of anti-commutation relations among a; ,a;*, a; and
3, i.e. @;+a;3,=0, aj>a;>+a;=a>=0, a;=a;+a;a™ =1y,
we can choose

a | X>= 0, when x,=0 _

Non-local phase:
‘the sign problem’

S0 8 [X>= (=D XXy, X, XX, >




Fermionic interactions

n
Simulate time-evolution generated by H = Z a1'+a1'
(counting the electrons) =

[a"a, ,ajaj] =0 Check with anti-commutation relations...

Thus eHt=giH1t @iH2t _@iHnt  where H; = afai

Since a;a|x>=0 if x=0 and a;>a|x>=|x> when x;=1,
We can represent a.>a: as (I-Z)/2 acting on the ith qubit.

Thus we can implement the time-evolution by a sequence
of 1-qubit rotations ei(1-2)t/2

Simple...(no global phases)
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2-particle tunneling interaction

Simulate time-evolution generated by H = ) (&'a, +a/a)
(electrons hopping over a lattice L) (i, NOL

Consider a single Hermitian term (i < j):
H, [x>=a'a +a/a |..%..X...>
a'a +aa|..0..0,...>=04a’a +aja |..1..1..>=0
aa +aal.0.1..>= (=1) %= ...1..0,...>,
a'a +aa|..1.0,.>= —(—1) " ..0..1,...>
51401 <



In terms of Pauli matrices...

We can rewrite this in terms of Pauli matrices as:

1
H,; |X>:§(Xi U X +Y, 0Y)(Z,,0..0Z,) x>

Non-local!

An ‘unphysical’ Hamiltonian with commuting terms, so
we can simulate each term separately with the procedure
that we have given previously _

Simulation cost of a pairwise interaction: 4n CNOT+10
single qubit interactions.

The total Hamiltonian H which is the sum of the pairwise
interactions can then be simulated with the small timestep

method.
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Comments

e Other physical (parity preserving) interactions can be
simulated similarly.

e Faster simulation (O(log(n)) by cleverer encoding
(Bravyi/Kitaev).
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Open questions

We have seen that a variety of physical systems can be
efficiently simulated on a quantum computer. The related
question about universality is also of great interest:

Can we find physical quantum systems whose natural dynamics
gives rise to a stronger quantum computation model?

From what we have seen the answer is NO.

An alternative description of quantum computation may be
useful to understand the power of QCs.

e What simulations do physicists carry out on their PCs?
Simulations of noisy systems, systems at finite
temperature, calculations of correlation functions....

e Simulation of relativistic field theories, lattice gauge
theories...?

. 5g%stion about starting states: for example, prepare

aussian wavepacket for quantum particle in a potential.



