Grover’s algorithm
and

applications

by

Alain Tapp

CACR
Dept. of Combinatorics & Optimization
Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

email: atapp®@cacr.math.uwaterloo.ca
http://www.iro.umontreal.ca/ " tappa/



Plan

1. Grover’s algorithm
(a) NP
(b) Grover’s iteration
(c) Search algorithm
(d) applications
(e) Heuristics

(f) Optimality of the algorithm

2. Approximate counting
(a) Grover’s iteration + QFT = Counting
(b) Counting algorithm and analysis
(c) Severals accuracy levels

(d) Applications



NP

A set S isin NP if there is a polynomial time
algorithm F' such that

Vw e S,3x, Fiy(z) =1

YVw & S,Vz, Fy(z) =0

A set is NPC if it isin NP and every set in NP
reduces to it in polynomial time.



Example of NPC problem

Scheduling:

Given a set of constraints C find a schedule s
without conflicts. Thus Fp(s) = 1 iff s is a schedule
without conflicts in C.

Travelling salesman:

Given a fixed budget ¢ and the cost to travel
between a list of cities C, give a tour ¢t with cost less
than the budget c. Thus Fio ) (t) =1 iff ¢ is an
appropriate tour.

Knapsack:

Given a list of objects L with their weights and
values, is it possible to get a subset with value at
least v and with a total weight of w. Thus
F(1 4 0)(8) = 1 iff s is appropriate.

Satisfiability:
Given a Boolean expression E, give an assignment to
the Boolean variables z; such that E(zq,...,zn) = 1.

Thus Fg(z) =1 iff E(z) = 1.



Search Problem

Searching a database

Given a table T and an entry vy,
find ¢ such that T[i] = y.

Searching under computable constraints

Given a boolean function F: X — {0,1}
find x such that F(z) = 1.

Note: It clearly relates to NP problems.



Grover’s Iteration

Gp=—HSgHSF

.~y ifi=o0
Soli) = i) otherwise.
N O !
Sr1i) i) otherwise.
1
H10) = \/—§(|0>+|1>)
L = (0 - 1)
; 2'—1

H®"|j) = Ve Z( 1)"7 |i)




Grover’s Algorithm

Grover(F, m)

1. |W) < H|0)

2. Do m times
V) < Gp|WV)

3. Measure |WV) and output its value.

t = [z € X|F(x) = 1}]



Success probability
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Iteration analysis

[A) +1B) = > |x)

(AlA) = ¢ (BIB) = N —t
o) = = ¥ o) = =l +—=IB)
reX

Solve:

G(H [0)) = ki |A) + £ | B)
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Gp|WV)

Iteration analysis (2)

—HSoHSp (k|A) +£|B))
HSoH (k|A)—£|B))

H(I —2[0)(0)H (k|A) —£[B))

(1= 2(14) + B)(A] + (BD) (k]4) - £]B))

N —1t

b14) = £1B) + (= 20k +27—10) (14) +[B))

(N—Qt 2(N—t)£>
N

~ K+ |A)

+(_—2tk+N_2t

VAT
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Iteration analysis

Theorem:
Let
sin?9 =t/N
then
(GR)™(H|0)) = km Y, |z)+4tm Y I|z)
F(z)=1 F(x)=0

where

b = sin((2m 4+ 1)6)

™ Vi

) = cos((2m + 1)8)

N —1t
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vwhen ¢t IS Kkhnown

T heorem:
When

" Larcsin (F)J - O(m)

Grover(F, m) outputs x such that F(x) = 1 with
probability at least &=L,

Proof:
Just put the appropriate value of m in the amplitude
equations of the previous slide.
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vwhen ¢ 1S unknown

T heorem:
There exists a quantum algorithm Search that given
F with t > 0 finds = such that F(z) = 1 with

expected time in O(y/N/t).

Search(F)

1. m=1,A=8/7

2. 7€r{0,...,m— 1}

3. x =Grover(F,j)

4. If F(z) = 1 then output = and stop

5. m = min(\,VN)

6. goto step 2.

Note: we can add a threshold of O(v/N) if we are
not sure that there is a solution.
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Minimum

Theorem:.

There exists an algorithm Minimum that finds xg
such that Vz, F(xz) > F(xg), with probability 1/2,
with an expected O(v/'N) calls to F.

Minimum(T)

1.

> W N

xg €p {0,...,N — 1}
Define F such that F(z) =1 & T(z) < T(xp)
x1 =Search(F)

If T(x1) < T(xg) then xg < x4

. If the cumulative number of calls to T is less

than 25V N goto step 2

. Output zg.
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Collision

Theorem:.:

Given G : X — Y a two-to-one function with

| X| = N, the algorithm Collision finds (zg,x1) such
that G(zg) = G(z1) in time and space O(V/N).

Collision(T)

1. For i from 1 to VN set T[i]=(i,G(i)).

2. Sort T and look for collision in T

3. Define F(z) = 1< (z > /N and G(z) € T)

4. Set rg =Search(F') and z; such that
G(z1) = G(zo)

5. Output (xo, xl).

16



Optimality

Theorem:

There is no algorithm that solves the problem
Search with good probability with an expected
number of call to F less than Q(v/N).

Proof sketch:
Search start in state |W) and call F via oracle Og.

W) UpOzUg_1 ... U10z |V)
W) UpUp_1...Up |WV)
D, = Y| |WE) — W) |12
X

Prove that:
1) Dy grows no faster than O(k2),
2) D, must be in (N) to distinguish N alternatives.
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Examples of heuristics

Hill-Climbing: local variations that increase an
objective function. Often very efficient!

Example: 3-Satisfiability, find assignment to
{x1,x2, 3,24} that satisfies

(z1VIoaVao)(@1VarViEz)(aoVaigVxz)
(1 Vo1 Vag)(xa Va3 Vaez)(otzVigV o)

Random assignment:

r1 =1, zo=1, xzg3=1and x4 =1
satisfies 4 clauses

local variation 1 =0

satisfies 5 clauses

local variation o =0

satisfies all 6 clauses!
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Heuristics

Let F be a family of functions of the form
F: X —{0,1} and D a probability distribution over
this family.

A heuristic is a function
G:FxR—X.

Let tp = [{z|F(z) = 1}
and hp = |{r|F(G(F, 1)) = 1}]

A good heuristic is such that
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Heuristics

Let G'(r) = F(G(r, F))

Algorithm:
Output G(F, Search(G’))

Analysis:
Warning! In general
1/2
(o) <Y va
but
R
> PF = > \/t_PF\/PF <
FeEF FeF V *F

1/2 1/2 1/2
(zim) () =z

FeF tp FeF FeF tp
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Approximate Counting

Counting Problem: given F : X — {0,1} with
|X| = N find £ a good estimate of t = {z|F(z) = 1}.

It — 1] Quantum Classical

O(Vt) O(V'N) Q2(N)

et o(% g) o ()

<1 |O(GJHN-1) | Q(N)
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Counting

The amplitude is a periodic function.
The period is related to t.

When m varies from O to P—-1
km draws r periods of a sin function.

sin((2m 4+ 1)6)

km:

Vit
r= PO/x
oot
sin (9)_N

Use Fourier analysis to evaluate r.
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Basics Tools

Parameterize Grover’s iteration

Glp : |m)® W) = |m) @ (Gp)™ V)

Quantum Fourier Transform

QFTp : Z 2mi5 ) ke Zp

Note that:
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Algorithm

Count(F, P)

1. [Wg) <« |0) H®™|0)

2. [W1) < QFTp®I®"|Vy)

3. Vo) « GIp|WVq)

4. |W3) + QFTp'®I%"|w,)

5. 7 < measure first register of |W3)

6. Output: = Nsin?’T (and 7 if needed)

24



Counting
Main T heorem

Theorem (Counting):
For ¢t = Count(F,P) then

- 2T 2
t—t| < —y\/t(N —t —N
[t = < StV =) + o

with probability at least 7%.
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[Wo)

[W2)

[W2)

1 P-1
- > sin((2m 4+ 1)6) |m)
m=0

allr]) +bllr+1]) +clP—[r])+
d|P —[r+1])+|R)
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Proof

With extensive algebraic manipulation,
one can show that

8

2

[R)[* < 1-—,
T

thus with probability % we have

T —r < 1,

60— 6| < E,
P

- 2T 2
t—t < —/t(N — 1 — .
F—t < VN =0+
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Good Estimation

Corollary 1:
Given F with N and t as defined before,
Count(F,cv/N) outputs ¢ such that

- 2T w2
t—1 < —Vt+ —
C 62

with probability f—Q and requires exactly

cV'N

evaluations of F'.

Proof:
Replace P with ¢v N in counting theorem.
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Constant Factor
Estimation

Corollary 2:
There exists an Algorithm CountRel(F,c¢) which
output ¢ such that

it —1t] < et

with probability 2/3 and runs in expected time

%, (1 N/t) |

€

CountRel(F, ¢)
1. 1=0
[+ 1l+1

I «Count(F,2)

> Wb

If f=0 and 2! < 2+/N then goto step 2

5. Output Count(F,2292/)
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Probably Exact Counting

Corollary 3:
There exists an algorithm Exact_Count that output
t such that

t=t
with probability 2/3 and runs with expected time in
O(/t(N — 1))

using only constant space.

Exact_Count(F)

1. {1 «<Count(F,50v/N) and {5 < Count(F,50vN)

2. P +Min(30\/i1(N — 1),30/f1 (N — 1))

3. Output Count(F,P)
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Other Applications (Sum)

Corollary 4:
Let FF: X — Y with |X|= N and Y an ordered set of
n-bit numbers between O and 1 and let

S= > F(i).
ieX
There exists an algorithm Sum that output S such
that

S-S < VS
which runs in time O(n?v/N).

Proof:
Let F'(i); be the jth bit of F(i).
Sum(F, N,n) (Christoph Diirr 97)
1. §+0
2. For 3 ranging from 1 to n

S + S + 2/Count™(F;,/N)

3. Output S.
31



Other Applications
(Selection)

Approximate Selection Problem:

Given F : X — Y with |X| = N and k, find zg such
that if ¥’ = [{z|F(z) < F(xg)}| then

|k —K'| < 2nvVk + 72,

Use binary search in combination with counting.

Can be solved in time O(log(N)2v/N)
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