Grover's algorithm

and

applications

by

Alain Tapp

CACR

Dept. of Combinatorics & Optimization Faculty of Mathematics University of Waterloo Waterloo, Ontario, Canada N2L 3G1

email: atapp@cacr.math.uwaterloo.ca http://www.iro.umontreal.ca/~tappa/

Plan

- 1. Grover's algorithm
 - (a) NP
 - (b) Grover's iteration
 - (c) Search algorithm
 - (d) applications
 - (e) Heuristics
 - (f) Optimality of the algorithm
- 2. Approximate counting
 - (a) Grover's iteration + QFT = Counting
 - (b) Counting algorithm and analysis
 - (c) Severals accuracy levels
 - (d) Applications

NP

A set S is in $\ensuremath{\mathsf{NP}}$ if there is a polynomial time algorithm F such that

$$\forall w \in S, \exists x, F_w(x) = 1$$

$$\forall w \not\in S, \forall x, F_w(x) = 0$$

A set is **NPC** if it is in **NP** and every set in **NP** reduces to it in polynomial time.

Example of NPC problem

Scheduling:

Given a set of constraints C find a schedule s without conflicts. Thus $F_C(s)=1$ iff s is a schedule without conflicts in C.

Travelling salesman:

Given a fixed budget c and the cost to travel between a list of cities C, give a tour t with cost less than the budget c. Thus $F_{(C,c)}(t)=1$ iff t is an appropriate tour.

Knapsack:

Given a list of objects L with their weights and values, is it possible to get a subset with value at least v and with a total weight of w. Thus $F_{(L,v,w)}(s)=1$ iff s is appropriate.

Satisfiability:

Given a Boolean expression E, give an assignment to the Boolean variables x_i such that $E(x_1, ..., x_n) = 1$. Thus $F_E(x) = 1$ iff E(x) = 1.

Search Problem

Searching a database

Given a table T and an entry y, find i such that T[i] = y.

Searching under computable constraints

Given a boolean function $F: X \to \{0, 1\}$ find x such that F(x) = 1.

Note: It clearly relates to **NP** problems.

Grover's Iteration

$$G_F = -HS_0HS_F$$

$$S_0|i\rangle = \begin{array}{cc} -|i\rangle & \text{if } i=0 \\ |i\rangle & \text{otherwise.} \end{array}$$

$$S_F |i
angle = egin{array}{ccc} -|i
angle & ext{if } F(i) = 1 \ |i
angle & ext{otherwise.} \end{array}$$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$H^{\otimes n} \ket{j} = \frac{1}{\sqrt{2^n}} \sum_{i=0}^{2^n-1} (-1)^{i \cdot j} \ket{i}$$

Grover's Algorithm

Grover(F, m)

1.
$$|\Psi\rangle \leftarrow H|0\rangle$$

2. Do m times $|\Psi\rangle \leftarrow G_F |\Psi\rangle$

3. Measure $|\Psi\rangle$ and output its value.

$$N = |X|$$
 $t = |\{x \in X | F(x) = 1\}|$

Success probability

Soufflé

Iteration analysis

$$|A\rangle = \sum_{F(x)=1} |x\rangle$$
 $|B\rangle = \sum_{F(x)=0} |x\rangle$

$$|A\rangle + |B\rangle = \sum_{x \in X} |x\rangle$$

$$\langle A|A\rangle = t \qquad \langle B|B\rangle = N - t$$

$$H|0\rangle = \frac{1}{\sqrt{N}} \sum_{x \in X} |x\rangle = \frac{1}{\sqrt{N}} |A\rangle + \frac{1}{\sqrt{N}} |B\rangle$$

Solve:

$$G_F^m(H|0\rangle) = k_m|A\rangle + \ell_m|B\rangle$$

Iteration analysis (2)

$$G_{F} |\Psi\rangle = -HS_{0}HS_{F} (k|A\rangle + \ell|B\rangle)$$

$$= HS_{0}H (k|A\rangle - \ell|B\rangle)$$

$$= H(I - 2|0\rangle\langle 0|)H (k|A\rangle - \ell|B\rangle)$$

$$= (I - \frac{2}{N}(|A\rangle + |B\rangle)(\langle A| + \langle B|)) (k|A\rangle - \ell|B\rangle)$$

$$= k|A\rangle - \ell|B\rangle + \left(-\frac{2t}{N}k + 2\frac{N-t}{N}\ell\right)(|A\rangle + |B\rangle)$$

$$= \left(\frac{N-2t}{N}k + \frac{2(N-t)}{N}\ell\right)|A\rangle$$

$$+ \left(\frac{-2t}{N}k + \frac{N-2t}{N}\ell\right)|B\rangle$$

Iteration analysis

Theorem:

Let

$$\sin^2\theta = t/N$$

then

$$(G_F)^m(H|0\rangle) = k_m \sum_{F(x)=1} |x\rangle + \ell_m \sum_{F(x)=0} |x\rangle$$

where

$$k_m = \frac{\sin((2m+1)\theta)}{\sqrt{t}}$$

$$\ell_m = \frac{\cos((2m+1)\theta)}{\sqrt{N-t}}$$

When t is known

Theorem:

When

$$m = \lfloor \frac{\pi}{\arcsin\left(\sqrt{t/N}\right)} \rfloor \in O(\sqrt{N/t})$$

Grover(F, m) outputs x such that F(x) = 1 with probability at least $\frac{N-t}{N}$.

Proof:

Just put the appropriate value of m in the amplitude equations of the previous slide.

When t is unknown

Theorem:

There exists a quantum algorithm **Search** that given F with t>0 finds x such that F(x)=1 with expected time in $O(\sqrt{N/t})$.

Search(F)

1.
$$m = 1, \lambda = 8/7$$

2.
$$j \in_R \{0, \dots, m-1\}$$

3.
$$x = Grover(F, j)$$

4. If F(x) = 1 then output x and stop

5.
$$m = min(\lambda, \sqrt{N})$$

6. goto step 2.

Note: we can add a threshold of $O(\sqrt{N})$ if we are not sure that there is a solution.

Minimum

Theorem:

There exists an algorithm **Minimum** that finds x_0 such that $\forall x$, $F(x) \geq F(x_0)$, with probability 1/2, with an expected $O(\sqrt{N})$ calls to F.

Minimum(T)

- 1. $x_0 \in_R \{0, \dots, N-1\}$
- 2. Define F such that $F(x) = 1 \Leftrightarrow T(x) < T(x_0)$
- 3. $x_1 = \mathbf{Search}(F)$
- 4. If $T(x_1) < T(x_0)$ then $x_0 \leftarrow x_1$
- 5. If the cumulative number of calls to T is less than $25\sqrt{N}$ goto step 2
- 6. Output x_0 .

Collision

Theorem:

Given $G: X \to Y$ a two-to-one function with |X| = N, the algorithm **Collision** finds (x_0, x_1) such that $G(x_0) = G(x_1)$ in time and space $O(\sqrt[3]{N})$.

Collision(T)

- 1. For i from 1 to $\sqrt[3]{N}$ set T[i]=(i,G(i)).
- 2. Sort T and look for collision in T
- 3. Define $F(x) = 1 \Leftrightarrow (x \ge \sqrt[3]{N} \text{ and } G(x) \in T)$
- 4. Set $x_0 = \mathbf{Search}(F)$ and x_1 such that $G(x_1) = G(x_0)$
- 5. Output (x_0, x_1) .

Optimality

Theorem:

There is no algorithm that solves the problem **Search** with good probability with an expected number of call to F less than $\Omega(\sqrt{N})$.

Proof sketch:

Search start in state $|\Psi\rangle$ and call F via oracle O_x .

$$|\Psi_k^x\rangle = U_k O_x U_{k-1} \dots U_1 O_x |\Psi\rangle$$

$$|\Psi_k\rangle = U_k U_{k-1} \dots U_1 |\Psi\rangle$$

$$D_k = \sum_x ||\Psi_k^x\rangle - |\Psi_k\rangle||^2$$

Prove that:

- 1) D_K grows no faster than $O(k^2)$,
- 2) D_k must be in $\Omega(N)$ to distinguish N alternatives.

Examples of heuristics

Hill-Climbing: local variations that increase an objective function. Often very efficient!

Example: 3-Satisfiability, find assignment to $\{x_1, x_2, x_3, x_4\}$ that satisfies

$$(\bar{x_1} \lor \bar{x_4} \lor \bar{x_2})(\bar{x_1} \lor x_2 \lor \bar{x_3})(\bar{x_2} \lor \bar{x_4} \lor x_3)$$

 $(x_1 \lor \bar{x_1} \lor x_4)(x_4 \lor x_3 \lor x_3)(\bar{x_3} \lor \bar{x_4} \lor \bar{x_2})$

Random assignment:

$$x_1=1,\ x_2=1,\ x_3=1$$
 and $x_4=1$ satisfies 4 clauses local variation $x_1=0$ satisfies 5 clauses local variation $x_2=0$ satisfies all 6 clauses!

Heuristics

Let \mathcal{F} be a family of functions of the form $F:X\to\{0,1\}$ and \mathcal{D} a probability distribution over this family.

A heuristic is a function

$$G: \mathcal{F} \times R \to X$$
.

Let
$$t_F = |\{x|F(x) = 1\}|$$
 and $h_F = |\{r|F(G(F,r)) = 1\}|$

A good heuristic is such that

$$E_{\mathcal{F}}\left(\frac{h_F}{|R|}\right) > E_{\mathcal{F}}\left(\frac{t_F}{|N|}\right)$$

Heuristics

Let
$$G'_F(r) = F(G(r, F))$$

Algorithm:

Output $G(F, \mathbf{Search}(G'_F))$

Analysis:

Warning! In general

$$\left(\sum x_i\right)^{1/2} \le \sum \sqrt{x_i}$$

but

$$\sum_{F \in \mathcal{F}} \sqrt{\frac{R}{t_F}} P_F = \sum_{F \in \mathcal{F}} \sqrt{\frac{R}{t_F}} P_F \sqrt{P_F} \le$$

$$\left(\sum_{F \in \mathcal{F}} \frac{R}{t_F} P_F\right)^{1/2} \left(\sum_{F \in \mathcal{F}} P_F\right)^{1/2} = \left(\sum_{F \in \mathcal{F}} \frac{R}{t_F} P_F\right)^{1/2}$$

Approximate Counting

Counting Problem: given $F: X \to \{0, 1\}$ with |X| = N find \tilde{t} a good estimate of $t = \{x | F(x) = 1\}$.

$ t- ilde{t} $	Quantum	Classical
$O(\sqrt{t})$	$O(\sqrt{N})$	$\Omega(N)$
ϵt	$O\left(rac{1}{\epsilon}\sqrt{rac{N}{t}} ight)$	$\Omega\left(rac{N}{\epsilon^2 t} ight)$
< 1	$O(\sqrt{t(N-t)})$	$\Omega(N)$

Counting

The amplitude is a periodic function. The period is related to t.

When m varies from 0 to P-1 k_m draws r periods of a sin function.

$$k_m = \frac{\sin((2m+1)\theta)}{\sqrt{t}}$$
$$r = P\theta/\pi$$
$$\sin^2(\theta) = \frac{t}{N}$$

Use Fourier analysis to evaluate r.

Basics Tools

Parameterize Grover's iteration

$$GI_F : |m\rangle \otimes |\Psi\rangle \rightarrow |m\rangle \otimes (G_F)^m |\Psi\rangle$$

Quantum Fourier Transform

$$QFT_P : |k\rangle \to \frac{1}{\sqrt{P}} \sum_{l=0}^{P-1} e^{2\pi i \frac{kl}{P}} |l\rangle \quad k \in Z_P$$

Note that:

$$QFT_P|0\rangle = \frac{1}{\sqrt{P}} \sum_{l=0}^{P-1} |l\rangle$$

Algorithm

Count(F, P)

1.
$$|\Psi_0\rangle \leftarrow |0\rangle H^{\otimes n} |0\rangle$$

2.
$$|\Psi_1\rangle \leftarrow QFT_P \otimes I^{\otimes n} |\Psi_0\rangle$$

3.
$$|\Psi_2\rangle \leftarrow GI_F |\Psi_1\rangle$$

4.
$$|\Psi_3\rangle \leftarrow QFT_P^{-1} \otimes I^{\otimes n} |\Psi_2\rangle$$

- 5. $\tilde{r} \leftarrow \text{measure first register of } |\Psi_3\rangle$
- 6. Output: $\tilde{t} = N \sin^2 \frac{\tilde{r}\pi}{P}$ (and \tilde{r} if needed)

Counting Main Theorem

Theorem (Counting):

For $\tilde{t} = Count(F, P)$ then

$$|t-\tilde{t}|<rac{2\pi}{P}\sqrt{t(N-t)}+rac{\pi^2}{P^2}N$$

with probability at least $\frac{8}{\pi^2}$.

Proof

$$|\Psi_0\rangle = \sum_{x \in X} \frac{1}{\sqrt{P}} |0\rangle |x\rangle$$

$$|\Psi_1\rangle = \sum_{m=0}^{P-1} \sum_{x \in X} \frac{1}{\sqrt{PN}} |m\rangle |x\rangle$$

$$|\Psi_2\rangle = \sum_{m=0}^{P-1} \frac{1}{\sqrt{P}} |m\rangle \left(k_m \sum_{F(x)=1} |x\rangle + \ell_m \sum_{F(x)=0} |x\rangle \right)$$

$$|\Psi_2\rangle = \sum_{F(x)=1} \left(\sum_{m=0}^{P-1} \frac{k_m}{\sqrt{P}} |m\rangle \right) |x\rangle + \sum_{F(x)=1} \left(\sum_{m=0}^{P-1} \frac{\ell_m}{\sqrt{P}} |m\rangle \right) |x\rangle$$

$$\left|\Psi_{2}^{\prime}\right\rangle = \frac{1}{\alpha}\sum_{m=0}^{P-1}\sin((2m+1)\theta)\left|m\right\rangle$$

Proof

With extensive algebraic manipulation, one can show that

$$||R\rangle|^2 < 1 - \frac{8}{\pi^2},$$

thus with probability $\frac{8}{\pi^2}$ we have

$$|\tilde{r} - r| < 1,$$
 $|\tilde{\theta} - \theta| < \frac{\pi}{P},$ $|\tilde{t} - t| < \frac{2\pi}{P} \sqrt{t(N - t)} + \frac{\pi^2}{P^2} N.$

Good Estimation

Corollary 1:

Given F with N and t as defined before, $\mathbf{Count}(F, c\sqrt{N})$ outputs \tilde{t} such that

$$|t - \tilde{t}| < \frac{2\pi}{c} \sqrt{t} + \frac{\pi^2}{c^2}$$

with probability $\frac{8}{\pi^2}$ and requires exactly

$$c\sqrt{N}$$

evaluations of F.

Proof:

Replace P with $c\sqrt{N}$ in counting theorem.

Constant Factor Estimation

Corollary 2:

There exists an Algorithm CountRel(F,c) which output \tilde{t} such that

$$|t - \tilde{t}| < \epsilon t$$

with probability 2/3 and runs in expected time

$$O\left(\frac{1}{\epsilon}\sqrt{N/t}\right)$$
.

CountRel(F, c)

- 1. l = 0
- 2. $l \leftarrow l + 1$
- 3. $\tilde{t} \leftarrow \mathbf{Count}(F, 2^l)$
- 4. If $\tilde{t}=0$ and $2^l<2\sqrt{N}$ then goto step 2
- 5. Output $\mathbf{Count}(F, \frac{200}{\epsilon}2^l)$

Probably Exact Counting

Corollary 3:

There exists an algorithm $\mathbf{Exact_Count}$ that output \tilde{t} such that

$$\tilde{t} = t$$

with probability 2/3 and runs with expected time in

$$O(\sqrt{t(N-t)})$$

using only constant space.

$\mathsf{Exact}_\mathsf{Count}(F)$

- 1. $\tilde{t_1} \leftarrow \mathbf{Count}(F, 50\sqrt{N})$ and $\tilde{t_2} \leftarrow \mathbf{Count}(F, 50\sqrt{N})$
- 2. $P \leftarrow \text{Min}(30\sqrt{\tilde{t_1}(N-\tilde{t_1})}, 30\sqrt{\tilde{t_1}(N-\tilde{t_1})})$
- 3. Output Count(F, P)

Other Applications (Sum)

Corollary 4:

Let $F: X \to Y$ with |X| = N and Y an ordered set of n-bit numbers between 0 and 1 and let

$$S = \sum_{i \in X} F(i).$$

There exists an algorithm \mathbf{Sum} that output \tilde{S} such that

$$|\tilde{S} - S| < \sqrt{S}$$

which runs in time $O(n^2\sqrt{N})$.

Proof:

Let $F(i)_j$ be the jth bit of F(i).

 $\mathbf{Sum}(F, N, n)$ (Christoph Dürr 97)

- 1. $S \leftarrow 0$
- 2. For j ranging from 1 to n

$$S \leftarrow S + 2^{j} \mathbf{Count}^{n}(F_{j}, \sqrt{N})$$

3. Output S.

Other Applications (Selection)

Approximate Selection Problem:

Given $F: X \to Y$ with |X| = N and k, find x_0 such that if $k' = |\{x|F(x) < F(x_0)\}|$ then $|k - k'| < 2\pi\sqrt{k} + \pi^2$.

Use binary search in combination with counting.

Can be solved in time $O(\log(N)^2\sqrt{N})$

References

Lov K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of 28th Annual ACM Symposium on Theory of Computing, May 1996, pp. 212–219. (quant-ph/9605043)

Michel Boyer, Gilles Brassard, Peter Høyer and Alain Tapp, Tight Bounds on Quantum Searching, Fortschritte der Physik, vol.46(4-5), 1998, pp. 493-505. (quant-ph/9605034)

Gilles Brassard, Peter Høyer and Alain Tapp, Cryptology Column —Quantum Algorithm for the Collision Problem, ACM SIGACT News, Vol. 28, June 1997, pp. 14-19. Presented at LATIN'98. (quant-ph/9705002)

References

Christoph Dürr and Peter Høyer, A Quantum Algorithm for Finding the Minimum (quant-ph/9607014)

Gilles Brassard, Peter Høyer and Alain Tapp, Quantum Counting, 25th International Colloquium, ICALP'98, LNCS vol. 1443, Springer, pp.820-831,1998. (quant-ph/9805082)

Gilles Brassard, Peter Høyer, Michele Mosca and Alain Tapp, Quantum Amplitude Amplification and Estimation, in Quantum Computation & Quantum Information Science, AMS Contemporary Math Series.

(quant-ph/0005055)