University of

Waterloo

Quantum Computer
Algorithms

Michele Mosca

Fields Institute Summer School in Quantum
Information Processing

Crash Course on
Computational Complexity

e Computational Complexity
e Computing Models

e Some notation

e Uniformity

Computational Complexity

e We usually measure the amount of resources
(e.g. time, space, gates) used by an algorithm
as a function of the input size.

¢ E.g. The grade-school algorithm for
multiplying two n-bit integers uses O(n?)
time steps. FFT methods use
O(n(logn)(loglogn)) time steps. The best
known lower bound is Q(n)steps.

"polynomial” cost

e When we say an algorithm uses a polynomial
amount of some resource (e.g. time, space,
gates, energy), we mean that there is some
polynomial p(n) such that the amount of that
resource used by the algorithm is in O(p(n))

e E.g. we can multiply n-bit numbers in
polynomial time.

"polynomial” cost

e If the cost is not bounded above by a
polynomial, we say its "super-polynomial”;
sometimes people abuse the term
“exponential” to mean super-polynomial

e E.g. the best rigorous probabilistic classical
algorithm for factoring n-bit numbers uses
time in eO(anogn)

e So there is no known polynomial time
classical algorithm for factoring

What's so special about
polynomials?

e The Strong Church-Turing thesis states that
a probabilistic Turing machine can simulate
any reasonable algorithmic process with at
most a polynomial overhead

e Using polynomial cost as our notion of
“efficiency” is very convenient.

Computing Models

e Two commonly used models are the Turing
machine model and the circuit model

Turing machines

e Turing machines can take inputs of any size.

e We measure the time complexity of a
computation on a Turing machine by the
number of steps taken before the TM stops

e The space complexity is the number of tape
positions used for the computation

e We usually consider the worst case
complexity for an input of a fixed size n.

Asymptotic Notation

e A function f(n) is in O(g(n)) if for some
constant m there exists a positive constant
c such that f(n)< c g(n) foralln= m

e A function f(n) is in Q(g(n)) if for some
constant m there exists a positive constant
c such that f(n) 2c g(n) for alln 2 m

e A function f(n) is in ©(g(n)) if for some
constant m there exists positive constants
¢, £ ¢, such that ¢; g(n)< f(n) < ¢, g(n) for
alln > m

Circuits

e We usually measure the complexity of a
circuit C, by its size, |C,|, which is the
number of gates in it.

e We can also measure the depth (or time),
and the space (or width).

e Circuits only take a fixed size input. So how
can we fairly compare them to Turing
machines?

10

Families of Circuits

e We consider families of circuits {C,} where
C, takes inputs of size n.

e We can, e.g., design a family of
multiplication circuits where C, has size
O(n?) or O(n logn loglog n).

e Recall that the description of a Turing
machine is finite. Where do we keep an
infinite family of circuits?

11

Families of Circuits

e We have a procedure (e.g. a Turing machine)
that generates the circuit diagrams for us

e For the size of the circuit C, to fairly
reflect the complexity of solving a problem
on an input of size n, the complexity of
generating the circuit must be "reasonable”

12

Families of Circuits

e The definition of "reasonable” varies
depending one what you are trying to prove,
but as a bare minimum, we expect the time
and space complexities of generating C, to
be at most polynomial in the size of C,

e For most of the circuits we will encounter,
it will be clear that we can efficiently
generate C, given the integer n

13

Families of Circuits

e A family of circuits that can be efficiently
generated is a uniform family of circuits

e Non-uniform families of circuits can require
exponential resources to construct. It is
possible to hide valuable information in the
circuit C, that we might not be able to
compute from scratch using poly(|C,|)
resources. It is not appropriate to use |C, |
as a measure of the complexity of solving a
problem "from scratch”

14

Uniform Families of Acyclic
Quantum Circuits

e The computing model we will use for most of
this course is uniform families of acyclic
circurts

e The word "circuit” seems to refer to
particular physical implementation of a
computer. We will often use the tferms
"network” or "array of gates” instead.

15

Quantum Algorithms
Overview

e Eigenvalue Estimation lets us factor
integers

e Eigenvalue 'kick-back' turns eigenvalue
estimation problem into phase estimation
problem

e Quantum Fourier Transform and Phase
Estimation

e Generalization to finding hidden
subgroups

e Finding Hidden Affine Functions

16

Integer Factorization

e The security of many public key
cryptosystems used in industry today
relies on the difficulty of factoring
large numbers into smaller factors.

e Factoring the integer N into smaller

factors can be reduced to the following
task:

Given integer q, find the smallest positive
intfeger rso that " =1 mod N

17

Simple operator

Since we know how to efficiently multiply by
a mod N, we can efficiently implement

U, 1%) = |ax)

Note that U£|x> _ ‘er> = x)

le. Ug — I

18

Interesting eigenvalues

I'f Ug — I then the eigenvalues of

k
UG are of the form 2 -
e
Py)
aj>

Ua‘ l_lJ) > :e ian

r-1

~ .k
yy=> e '
j=0

19

Checking the eigenvalue

r-1 -i2nj§ i
Ua‘Wk>:Ze Uaa >
j=0
i S P
.

I ¢ A .k
- , i2m— | « i2mji— .
J=0 ‘
I -1 . .k k
i2m—| <& -i2mi— . i2m—
—_ r r J — r
e (ZO e a >) =e "|y,)
J:

20

Finding r

For most integers k, a good estimate of —
1 r

(with error at most 22) allows us to

determine r (even if we don't know k).
(using continued fractions)

Where do we get |¥,) ?
Since most k are good a r'cmdom ‘ LPk>

suffices. Try ‘> Z ‘LIJ>

21

Estimating Random
Eigenvalue lets us Factor

In summary:
Factoring large numbers can be reduced to
estimating a random eigenvalue of U

a

22

Must make the "global”
phase a "relative” phase

A global phase has no physical significance.

In other words, states that differ only by a
global phEse are equivalent

U Zx:ax X) :Zx:bx|x>
U(e‘ezx: d,|Xx) :emzx: b, %)

eiH

®)=|®)

SO

23

Must make the "global”
phase a "relative” phase

A relative phase can affect outcome
probabilities
E.g.

0+ e 111 (1 +e! j|o> [
7

po = COS

“Jn

24

Eigenvalue "kick-back”

We can also efficiently implement

c—U,0)x) =]0)|x)
c—U,[1)Ix) =[1)]ax)

=Yg 10w =[o)w,)
c—U, [DI%e) =e " 1)¥,)

25

How do we implement c-U?

Replace every gate G in the circuit for
with a c-6.
For example,

A=A

26

Eigenvalue kick-back

We can thus efficiently implement
k
i2 T
0)+[1) —— 0)+e?"]1)
J Y

a
This gives us a relative phase shift of
O = ,.k inthe control qubit

r

€
~—

27

Inefficient exponentiation

We can effect a relative phase shift ofei?r(

ZYl_(
r

C
C
C
S
2

28

Efficient Exponentiation

But we can also do it efficiently by noticing

that 27

UG = UGZY
T
VaValUef = {Uef (U2

oY

29

Reduction to phase
estimation

We can efficiently construct

—

r—

N
SIx

\/

30

Phase Estimation

Given the qubits

£O>+ei2"(t)l>J [O>+ei2n(2:j1>j .. [o>+ei2"(@‘:)1>\

/

k
Estimate

Special Case

(0+e¥)) (0+e™]1) (0+&*1)

Where
P X XXoXs AX 2% t+X;
T == — :O.x1>(2x3
2T 8 8 8

Since €7 =1 then we have the state

[0+ {0y+e0]t) 0]+

32

Recall Hadamard transform

b) 1 (0)+(-1)11) =(0) +e*¥) 1)

33

Obvious Phase Estimation
Algorithm

[0)+&ZoxI)1) — H |— [%)

(0)+e™+=]1)

Qo> +eiZ'T(0-x1><z><3)‘ 1>)

34

Phase Estimation

)+) — H & %)
[0+t ——(R)— 0y re=-I1)

UO> +eiz"(0->ﬁxzx3)‘ 1>)

0—R)—0 B—R)—e"l

35

Natural Phase Estimation

[0)+&*>)1))— H
Q0>+e‘2'*°°’@"3)1>) H — |x2)

36

Phase Estimation

|0) +Z©)1)) 4 H o
VR H

(0 +ee<x<) RIR:)

37

Inverse Quantum Fourier
Transform

If we

reorder the final qubits, we have

1 H

=~ -QFT," -

38

What is a (Q)FT?

FT ,:C* - C?
ej :(0,0,...’l,...,0,0)

i21rin iZn[ZLJ

ionf (2 -1).3
(le Z,e ‘2, e 1{(1)5]

NS
V2
FT ™ 1 (l,eiznzi",emﬁ[zzinj eizw{(2n _1)2%]) —e

Jor

39

What is a (Q)FT?

(1e? e ei((2"—1)¢))

ooooo

40

What is a (Q)FT?

41

What is a (Q)FT?

QFT

J\

‘a. =

S e e Yal)

SN
sinZ”(¢—J T
_ 2n 2")

¢

F)
Z"Sin(¢—‘] T
\ZTI Zn/)

42

Phase Estimation: Arbitrary ¢

[0+e“1) T , D x.
(JO>+e‘(2¢)\1>) H D x.
0)+e]1) H B [x,

P =21

(4x, +2x, +X;) g ¢
8 2ﬂ 27T

<1l:8
8) T°

43

Quantum Factoring

We can efficiently estimate K
r
O> + 1> *— —. ~
O> + 1> ° QFT) 5
0 +1) — LA
‘ka> UG qu Uq4§ ‘LIJk>

[Kitaev95, CEMM98]

Factoring Network

We are effectively studying the behaviour of
the controlled-U_in a 'very quantum’ basis.

" D
QFT . QFT ')
: —

‘qu> :UG Ua2 Ua4: ‘ka>

3| X2

45

Factoring Network

The given network maps

LTS

And therefore

000)/1) = 37/000)1¢, 1> - ¥

k

46

Partial measurements

k ‘L'} > What do we get when we
r /' %/ measure the first register?
In general, we can rewrite

oo Xly) = Z e S)

1
2

47

Partial measurements

The probability of measuring x in the first
register of be\x>\<].5x> s p 2

X

48

Partial measurements

Alternatively, we can rewrite

> 0, ly)= X[S a0)

49

Partial measurements

Measuring the first register of 2. ¢,|2,)lY)
is equivalent to performing a measurement

on the state ‘@;> with probability

2
Y

50

Partial measurements

Y
Measuring the first register of Z \/_ >‘)

is equivalent to performing a measur'emen’r
on the state |k S with probability 1

r r

51

Factoring Network

We are effectively studying the behaviour of
the controlled-U_in a 'very quantum’ basis.

0) — QFT o arriP K
0 — o —P T

1) U, 5Y.HY

—1a a

[CEMM98] show this is equivalent to [Shor94]

52

Complexity comparison

The best rigorous classical algorithms use
e O (flog(N)log log(N)) operations

The best heurlis‘ric clas;ical algorithms use
g O (log(N)3 log log(N)3) operations

The quantum algorithm uses poly(log(N))
— g Olog log(N)) operations

53

Hidden Subgroup

This approach allows us to solve efficiently any
"Abelian Hidden Subgroup Problem”
(see [ME98],[M99],[NCOO])

f:6 - X
K<6
f(=f(y) = x-yOK

Find K

54

Hidden Affine Functions

Hidden Affine Functions:

X - MX"'b

Find M using only m evaluations of f
(instead of n+1) (D,BV,CEMM H,M)

55

